Skip to main content
Figure 5 | BMC Cell Biology

Figure 5

From: Control and maintenance of mammalian cell size

Figure 5

Unsynchronized cells cannot be used to determine cell-cycle pattern of synthesis. Panel (a) shows a series of age distributions starting with the initial age distribution reflecting the pattern Age Distribution = 21-X, where X is the cell age going from 0.0 to 1.0. In this Gedanken analysis, it is assumed that cells of age 0.5 (i.e., cells in mid-cycle) are the only cells incorporating amino acid (cross-hatched bars). The asterisk (*) on a bar in each pattern indicates the newborn cells. One reads the cell ages by going from the asterisked bar to the right and then back to the left to finish off the age distribution. The number to the right of each pattern is the relative number of cells incorporating amino acid. Thus, in the uppermost pattern in Panel (a) the relative number is 1.46. After one-tenth of a generation we see that the oldest cells in the first pattern have divided to give double the number of cells and these cells are now the youngest cells in the culture. All of the other cells move up one-tenth of an age so that the cells that were age 0.4 are now age 0.5 (cross-hatched bar) and the rate of synthesis increases to 1.57. This is because there are more cells in the original culture of age 0.4 than there were of age 0.5. Continuing down the patterns in Panel (a) we see that as cells move to age 0.5 there is a continuous, and exponential, increase in the radioactivity. The cells above age 0.5 (in the original topmost diagram) divide and produce two cells each tenth of a cell cycle, so that over one total cell cycle there is an exponential increase in the rate of amino acid incorporation (a measure of cytoplasm increase). The total pattern of incorporation is plotted in panel (b) where the exponential incorporation during one cell cycle is indicated. Panels (a) and (b) thus show that even with a non-exponential pattern of incorporation, if a total culture is studied, the measured incorporation pattern will be exponential. If, however, cells are truly synchronized, as illustrated in Panel (c), a peaked incorporation pattern is observed, accurately reflecting the mid-cycle incorporation of amino acids into the cells at a particular cell-cycle age. Starting with newborn cells at age 0.0 and moving through the cell cycle at one-tenth of an age each pattern in (panel c) the incorporation (noted by the numbers to the right of the diagrams (panel c) shows a peaked pattern.

Back to article page