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Abstract
Background: The Janus kinase (JAK) cascade is an essential and well-conserved pathway required
to transduce signals for a variety of ligands in both vertebrates and invertebrates. While activation
of the pathway is essential to many processes, mutations from mammals and Drosophila
demonstrate that regulation is also critical. The SOCS (Suppressor Of Cytokine Signaling) proteins
in mammals are regulators of the JAK pathway that participate in a negative feedback loop, as they
are transcriptionally activated by JAK signaling. Examination of one Drosophila SOCS homologue,
Socs36E, demonstrated that its expression is responsive to JAK pathway activity and it is capable
of downregulating JAK signaling, similar to the well characterized mammalian SOCS.

Results: Based on sequence analysis of the Drosophila genome, there are three identifiable SOCS
homologues in flies. All three are most similar to mammalian SOCS that have not been extensively
characterized: Socs36E is most similar to mammalian SOCS5, while Socs44A and Socs16D are most
similar to mammalian SOCS6 and 7. Although Socs44A is capable of repressing JAK activity in some
tissues, its expression is not regulated by the pathway. Furthermore, Socs44A can enhance the
activity of the EGFR/MAPK signaling cascade, in contrast to Socs36E.

Conclusions: Two Drosophila SOCS proteins have some overlapping and some distinct
capabilities. While Socs36E behaves similarly to the canonical vertebrate SOCS, Socs44A is not part
of a JAK pathway negative feedback loop. Nonetheless, both SOCS regulate JAK and EGFR signaling
pathways, albeit differently. The non-canonical properties of Socs44A may be representative of the
class of less characterized vertebrate SOCS with which it shares greatest similarity.

Background
The vertebrate JAK signaling pathway is an essential com-
ponent of cellular response to a wide array of cytokines
and growth factors. The JAK cascade is reutilized for sign-
aling events in numerous tissues and at multiple stages of
mammalian development [reviewed by [1-3]]. Many

interleukins, interferons, and growth factors are among
the ligands that stimulate signaling through the JAK path-
way. The pathway can also be stimulated through activa-
tion of some receptor tyrosine kinases, including
epidermal growth factor receptor (EGFR). As a result of its
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broad utilization, JAK signaling is essential for many
developmental events.

Though the JAK pathway is vital to many developmental
processes, strict control of JAK signaling is equally impor-
tant. As with other signaling pathways, mechanisms must
be in place to balance the activation of JAK pathway activ-
ity. Regulation serves to "reset" the pathway so that it will
be responsive to subsequent signals and it restricts the
level or duration of the signal so that it is properly inter-
preted by the cell. Inappropriate JAK activation is the
direct cause of a specific form of acute lymphocytic leuke-
mia (ALL) [4-6]. In addition, JAK/STAT activation has
been strongly correlated with a variety of cancers, includ-
ing many blood cell and immune cell transformations
[reviewed by [7-9]]. Furthermore, in cell culture, constitu-
tive activation of c-Eyk, v-src, or v-abl results in the consti-
tutive activation of specific STATs or JAKs [10-13]. These
examples highlight the necessity of regulating JAK/STAT
activation.

Because of the need to limit JAK activity, it is not surpris-
ing that there are several conserved protein families that
regulate JAK activation [reviewed by [3,14,15]]. These
include phosphatases, Protein Inhibitors of Activated
STATs (PIAS), and, the best characterized, the suppressors
of cytokine signaling (SOCS) family. In mammals, eight
different SOCS genes have been found [16]. These SOCS
proteins have a distinctive modular architecture: a central
SH2 domain followed by a carboxyl terminal SOCS
domain, while the amino termini are quite divergent. Bio-
chemical investigations have revealed that SOCS proteins
use multiple mechanisms to regulate activity of the JAK
pathway [see reviews, [3,9]]. First, the SOCS SH2 domain
can bind to the phosphorylated receptor, thereby prohib-
iting access to positive effectors of the pathway. Second, at
least some SOCS can specifically inhibit the catalytic activ-
ity of JAKs. Lastly, SOCS binding to activated JAK pathway
components may target those proteins for degradation.
The SOCS motif interacts with the elongins B and C,
which bind to cullins and are E3 ubiquitin ligases [17,18].
Addition of ubiquitin to the bound proteins would target
them for proteasomal degradation. Therefore, the nega-
tive influence of SOCS on its substrates may be due to
multiple distinct mechanisms.

Use of the JAK signaling pathway for developmental proc-
esses is not restricted to mammals. Indeed, the JAK cas-
cade is evolutionarily conserved, and can be found as an
intact signaling pathway even in insects [3,19-21]. In Dro-
sophila, the JAK pathway is involved in embryonic pattern-
ing, sex determination, blood cell development,
patterning of adult structures, planar polarity of photore-
ceptor clusters, maintenance of stem cells in spermatogen-
esis, and follicle cell patterning and function [see reviews

[19,21]]. Furthermore, the fly JAK pathway must also be
properly regulated to avoid deleterious effects. As in verte-
brates, hyperactive JAK signaling has also been shown to
directly cause neoplastic cell growth in Drosophila. Two
dominant gain-of-function alleles of hopscotch result in
hypertrophy of the larval lymph glands, the hematopoi-
etic organ, and melanotic masses [22-24]. Excess activity
in the blood system causes overproliferation and differen-
tiation of the macrophage-like blood cells, creating leuke-
mia-like effects. Inappropriate activity in the developing
tissues of the adult fly can also cause alteration of the
development of the adult thorax, wing veins, head, eyes,
and ovaries [22,25-27].

Of the eight mammalian SOCS, four have been studied
extensively (CIS, SOCS1-3). These genes have been shown
to respond to JAK pathway activation and subsequently
are able to downregulate its activity as described above,
completing a classical negative feedback loop. In compar-
ison, very little is known of the remaining four. Here we
present the identification and characterization of Dro-
sophila Socs44A. It contains the same modular domain
architecture as mammalian SOCS and shows greatest
sequence similarity to the relatively uncharacterized
SOCS6 and SOCS7. We show that, unlike the previously
studied Drosophila Socs36E [28,29], Socs44A expression in
embryogenesis is independent of JAK pathway activity.
However, Socs44A is able to regulate the JAK cascade in
embryogenesis, but not in oogenesis. Finally, Socs44A
genetically interacts with and upregulates the EGFR/
MAPK pathway. The characteristics of Socs44A that distin-
guish it from the canonical Socs36E may be representative
of features that are shared with the class of less-defined
mammalian SOCS genes.

Results
The Drosophila genome encodes three putative SOCS 
genes
Based on the consensus protein sequence for a SOCS box
derived by Hilton and colleagues [30], a tBLASTn search
of the Berkeley Drosophila Genome Project (BDGP) data-
base [31] was conducted to examine all possible reading
frames. Three putative loci containing both a SOCS box
and an SH2 domain were identified using this strategy. All
three match the arrangement of mammalian SOCS genes
in that the SOCS box is at the carboxyl terminus with the
SH2 domain directly preceding it. Each of these putative
homologues also overlaps with a predicted gene from the
BDGP. We named these three genes Socs16D (overlapping
with CG8146), Socs36E (overlapping with CG15154),
and Socs44A (CG2160), based upon their cytological loca-
tion. Comparison of these three fly SOCS genes with ver-
tebrate SOCS reveals that Socs36E is most similar to the
mouse SOCS5, while Socs16D and Socs44A are less simi-
lar to specific mouse SOCS (see Fig. 1). While the amino
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termini are quite different, SOCS5 and Socs36E are 62%
identical (71% similar) at the carboxy terminus from the
region just before the SH2 domain to the end of the SOCS
domain (region shown in Fig. 1A). Within that same C-
terminal region, Socs44A is most similar to SOCS6 and
SOCS7 (46% and 39% similar, respectively). Socs16D
also has highest similarity to SOCS6 and SOCS7 (47% to
each) over the same carboxyl region. These similarities
suggest that the ancestral versions of Socs36E and a com-
mon predecessor of Socs16D and Socs44A existed as two
separate SOCS genes at the time of divergence of mam-
mals and dipterans (Fig. 1B).

Socs44A expression is not regulated by JAK pathway 
activity
In mammals, regulation of JAK signaling through SOCS
proteins is based on a simple negative feedback mecha-
nism. Specifically, the activity of the JAK pathway stimu-
lates the expression of SOCS genes, because activated
STATs bind to enhancers for the SOCS genes and induce
transcription. Socs36E is similarly regulated during embry-
ogenesis by Drosophila JAK signaling [29]. Socs36E is
expressed dynamically, in a striped pattern that later
becomes restricted predominantly to the tracheal pits
[[28,29], and Fig. 3], very similar to upd, the gene

Protein sequence comparison of Drosophila and mouse SOCSFigure 1
Protein sequence comparison of Drosophila and mouse SOCS. (A) The predicted carboxyl terminal protein sequences 
of Drosophila (d), mouse (m), and C. elegans (ce) SOCS genes, including the SH2 and SOCS box domains, are aligned and shaded 
to indicate similarities and identities. (B) Based on the protein alignments, the neighbor-joining method was used to construct a 
phylogenetic tree of these SOCS.
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encoding the embryonic ligand for the JAK pathway [32].
Indeed, activation of JAK signaling is both necessary and
sufficient for Socs36E expression in embryogenesis [29].
Furthermore, the expression of Socs36E during oogenesis
matches the known activation of JAK signaling. The

expression of upd in the ovaries is restricted to the two
polar follicle cells at either end of the egg chambers of the
vitellarium [[26] and Fig. 2C]. Socs36E is expressed in a
larger number of follicle cells centered at the two poles of
the egg chamber (Fig. 2D). Given that secreted Upd pro-

Loss of JAK activity does not affect Socs44A expressionFigure 3
Loss of JAK activity does not affect Socs44A expression. As compared with wild-type at various embryonic stages (A 
and B), germline clone derived embryos from hopc111 mothers (C-H) display dramatically reduced or eliminated expression of 
Socs36E (C and D). Only a stripe of mesodermal staining in germ band extended embryos (D) remains at nearly normal inten-
sity in the mutant embryos. In contrast, expression of Socs44A in trachea persists in hopc111 germline clone-derived embryos 
that are unrescued (E) or paternally rescued (F). However, the trachea are morphologically altered and drastically reduced in 
unrescued (G) and paternally rescued (H) animals, as compared with wild-type (I), as evidenced by a trachealess enhancer trap 
(G-I).

Socs36E and Socs44A are expressed in different spatio-temporal patternsFigure 2
Socs36E and Socs44A are expressed in different spatio-temporal patterns. The embryonic expression patterns of upd 
and Socs36E are dynamic from early blastoderm throughout embryogenesis [see 28, 29 and Fig. 3]. Socs44A expression is not 
detected until very late stages in the trachea (A). Although such staining can be artifactual, sense strand probe never showed 
any staining (B). In the ovary, upd is expressed specifically in the polar follicle cells at each end of the chamber (C). Socs36E 
expression encompasses the anterior and posterior follicular epithelium, with highest expression at the poles (D). This is con-
sistent with activation of Socs36E transcription due to reception of the Upd ligand which is secreted from the polar follicle cells 
and diffuses toward surrounding cells. Socs44A expression is restricted to the germline and only during later stages of oogene-
sis (E)
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tein is produced in the polar follicle cells and activates JAK
signaling in neighboring cells [33], this suggests that
Socs36E expression is controlled by JAK activity in oogen-
esis, as well as embryogenesis.

The Socs44A gene that was predicted based on protein
homology is identical to hypothetical gene CG2160. A
single cDNA corresponding to the locus (LP02169) was
isolated by the BDGP, has been completely sequenced
and encodes the expected SH2 and SOCS domains at the
carboxyl terminus (gb AF435923). To determine whether
Socs44A is similarly regulated by JAK pathway activity, in
situ hybridization to embryos and ovaries was performed.
No specific expression of Socs44A was detected until very
late in embryogenesis. The only striking staining pattern
observed was in the trachea of late embryos (Fig. 2A).
Non-specific tracheal staining is sometimes seen with
probes to late embryos, however this pattern was never
observed when sense probe was used (Fig. 2B). Unfortu-
nately, embryos homozygous for any available deletions
that remove Socs44A die prior to formation of trachea,
therefore we cannot conclusively determine whether the
late tracheal staining reflects RNA expression. Nonethe-
less, because the JAK pathway is activated in a segmentally
repeated pattern during embryogenesis, the lack of
Socs44A expression suggests that it is not responsive to JAK
signaling. Consistent with this conclusion, expression of
Socs44A in the ovary is restricted to only germline expres-
sion late in oogenesis, with no detectable RNA in the fol-
licular epithelium (Fig. 2E).

To directly test whether Socs44A expression is regulated by
JAK pathway activity, in situ hybridization to Socs44A
RNA was performed in embryos that lack JAK pathway
activity. The product of the hop gene is required in early
embryogenesis and must be provided maternally for
proper segmentation of the embryo. The dominant
female sterile (DFS) technique was used to generate
females that fail to produce hop in the germline [34]. In
situ hybridization of hop germline clone embryos using
Socs36E as probe demonstrates a strong reduction in
Socs36E expression in the mutant embryos as compared
with wild-type (Fig. 3). Similar results have been reported
in embryos lacking upd activity [29]. These data demon-
strate that hop is required to stimulate the normal segmen-
tally-repeated Socs36E expression in the embryo.
However, expression of Socs44A does not appear to be
affected by maternal loss of hop. Although the trachea are
malformed and dramatically reduced in embryos lacking
JAK pathway activity [[35,36] and Fig. 3G,3H], the
remaining segments of trachea continue to express
Socs44A at apparently normal levels (Fig. 3E,3F). Thus the
failure of endogenous Socs44A to be expressed in the nor-
mal pattern of JAK pathway activation and of Socs44A

expression to be eliminated by loss of JAK activity indicate
that Socs44A expression is not stimulated by the pathway.

Activity of the JAK pathway is both necessary and suffi-
cient for the expression of Socs36E. The ectopic activation
of the JAK pathway by misexpression of upd results in
expression of Socs36E in the same pattern [[29] and data
not shown]. In contrast, similar misexpression of UAS-
upd with the paired-GAL4 driver failed to stimulate any
detectable expression of Socs44A in the embryo (not
shown). We conclude that Socs44A expression is not
responsive to JAK pathway activity, therefore cannot func-
tion via a traditional auto-regulatory feedback loop.

Ectopic SOCS activity suppresses JAK signaling in the wing
The lack of transcriptional regulation by JAK signaling
does not preclude a role for Socs44A in the control of JAK
activity. To test whether it can attenuate JAK signaling,
Socs44A was misexpressed using the GAL4/UAS system.
Similar experiments performed with Socs36E have dem-
onstrated that expression in the developing wing repro-
ducibly results in the production of ectopic wing vein near
the posterior crossvein [Fig. 4C and [28]]. This phenotype
is quite similar to that noted for viable mutants of hop or
Stat92E [Fig. 4B and [37]], suggesting that Socs36E misex-
pression may cause a reduction in JAK signaling in the
wing. But unlike observed JAK mutations, the anterior
crossvein was also completely missing from Socs36E
misexpression wings, perhaps suggesting an additional
role for Socs36E that is independent of the JAK pathway.
Callus and Mathey-Prevot [28] demonstrated that the
additional influence on wing venation may be due to the
suppression of the EGFR pathway.

Using the engrailed-GAL driver, GAL-e16E, expression of
Socs44A in the posterior compartment of the wing caused
mild venation defects similar, but not identical, to
Socs36E (Fig. 4D). Expression of Socs44A caused produc-
tion of ectopic wing vein near the posterior crossvein, but
unlike Socs36E, the ectopic vein was seen predominantly
posterior to L5, not between L4 and L5. Furthermore, the
anterior crossvein was not reduced or eliminated by
Socs44A expression, but a substantial arching of L3 was
noticed. Both the ectopic vein and arching of L3 were
enhanced in animals heterozygous for a null allele of hop
(Fig. 4E), indicating that the phenotype is sensitive to a
reduction in JAK pathway activity. Misexpression of hop
activates JAK signaling and causes reduction of wing
venation in the posterior of the wing, somewhat the
opposite of Socs44A misexpression (Fig. 4F). The simulta-
neous misexpression of hop and Socs44A results in a phe-
notype similar to expression of Socs44A alone (Fig. 4G).
Therefore, the activity of Socs44A is capable of negating
the influence of ectopic JAK activity in the wing.
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Socs44A misexpression reduces JAK signaling in the wingFigure 4
Socs44A misexpression reduces JAK signaling in the wing. Wild-type venation (A) is compared with a viable hop 
mutant, hopmsv/hopM38 (B). hop reduction causes ectopic vein (arrow) near the posterior crossvein. (C) Expression of UAS-
Socs36E using the engrailed-GAL4 driver (e16E-GAL) produces a similar ectopic vein phenotype, plus the loss of the anterior 
crossvein (arrowhead). (D) Similar misexpression of Socs44A causes ectopic wing vein production near the posterior crossvein 
(arrow) and arching of vein L3 (arrowhead). (E) Reduction of the dosage of hop enhances the Socs44A misexpression pheno-
type. (F) Misexpression of hop in the posterior compartment causes dramatic vein loss, but that loss is restored by the simulta-
neous expression of Socs44A (G).
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Loss of JAK function in embryos is lethal, but various
combinations of weak alleles of hop show some viability
(Table 1). If Socs44A were negatively regulating the JAK
pathway, misexpression of Socs44A in a hop mutant back-
ground would be expected to further reduce viability. The
ability of Socs44A misexpression to enhance the lethality
of weak heteroallelic combinations of hop was tested. For
all alleles examined, expression of Socs44A in the engrailed
pattern caused complete lethality. For the weakest hop
allelic combination, hopmsv/hopM75, misexpression of
Socs44A caused viability to drop from 62% to 0% (Table
1). These data are consistent with the hypothesis that
ectopic Socs44A acts to further reduce pathway activity in
these JAK activity depleted animals, causing lethality.

While the above data indicate that ectopic Socs44A is
capable of downregulating JAK activity, they do not
address whether Socs44A has an endogenous role in JAK
pathway regulation. To determine if endogenous Socs44A
downregulates JAK activity, we assayed the effect of a
Socs44A deficiency on hop mutant phenotypes. The
hopM38/msv heteroallelic mutant exhibits wing vein material
at the posterior crossvein (Fig 4B) that is 98% penetrant.
Removal of a single copy of Socs44A using either of two
deficiencies in the region reduced the penetrance of the
hop phenotype by as much as 52% (Table 2). An overlap-
ping deficiency that did not remove the Socs44A locus had
little effect on penetrance of the phenotype. These results

suggest that regulation of JAK activity in the wing is a nor-
mal endogenous function of Socs44A.

Socs44A upregulates EGFR pathway activity
In mammals, there are multiple points of cross-talk
between the JAK and EGFR/MAPK signaling pathways
[3,38-40]. EGFR signaling plays a prominent role in many
developmental processes in Drosophila, including wing
venation [41,42]. As mentioned above, expression of
Socs36E has been reported to suppress EGFR signaling in
the wings [28]. To determine the relationship of Socs44A
to EGFR/MAPK signaling, wing phenotypes due to misex-
pression of Socs44A were examined in the background of
heterozygous mutations for components of the EGFR sig-
naling pathway. Engrailed-GAL4 driven misexpression
phenotypes of Socs44A were suppressed in the back-
ground of heterozygous mutations for Ras85D, Son of
sevenless (Sos), and Egfr (Fig. 5A,5B,5C,5D). Consistent
with these observations, reduction in the dosage of the
EGFR negative regulator argos enhanced the Socs44A
misexpression phenotype (Fig. 5E). In contrast, concur-
rent misexpression of Socs44A and argos had antagonistic
effects. Misexpression of two copies of an argos transgene
under the engrailed-GAL4 driver resulted in wings lacking
the 4th lateral vein (L4) as well as both cross-veins (Fig.
5H). Concurrent misexpression of a single copy of the
Socs44A transgene in this background was able to rescue
this phenotype, restoring the posterior crossvein and both
the most proximal and distal portions of L4 (Fig. 5I). The

Table 1: Misexpression of Socs44A exacerbates the reduced viability of hop heteroallic mutants.

Genotype hopM38 (n = 213) hopGA32 (n = 332) hopM75 (n = 172)

A- hopx/FM7; en-GAL; TM3 33 52 21
B- hopx/FM7; en-GAL; UAS-socs44A 25 33 28
C- hopx/hopmsv; en-GAL; TM3 11 20 13
D- hopx/hopmsv; en-GAL; UAS-socs44A 0 (E = 8.33) 0 (E = 12.69) 0 (E = 17.33)

Misexpression of Socs44A in a range of hop heteroallelic mutants resulted in lethality. For each mutant combination, x is the allele of hop designated 
in the column heading, n represents the total number of progeny scored in the cross. E represents the expected number of progeny of that 
genotype if Socs44A misexpression were to have no effect on viability. The expected value is calculated using the formula A/B=C/D, which takes 
into account the change in viability imparted by homozygosity for hop relative to heterozygosity and the change in viability for misexpression of 
Socs44A relative to the GAL4 alone. The progeny scored here are derived from the cross: hopX/Y Dp(1;Y)v+y+hop+; en-GAL4/CyO males mated to 
hopmsv/FM7; UAS-socs44A/TM3 females.

Table 2: Endogenous Socs44A regulates JAK pathway activity.

+/+ CA53/+ (n = 237) NCX10/+ (n = 292) Drl/+ (n = 242)

hopM38/hopmsv 98% (of 89) 46% (of 13) 58% (of 12) 87% (of 15)

hopmsv/hopM38 heteroallelic females have a wing spur phenotype (Fig. 4B) that is 98% penetrant (n = 89). The penetrance of the spur phenotype is 
dramatically reduced by removal of one copy of Socs44A, as seen for heterozygotes of Df(2)CA53 (CA53)and Df(2)NCX10 (NCX10). Rescue of the 
phenotype was not seen with Df(2)Drlrv18 (Drl), an overlapping deficiency that does not include Socs44A. Total number of animals is indicated by n, 
and number of animals of the indicated genotype is in parentheses.
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Socs44A increases activity of EGFR signalingFigure 5
Socs44A increases activity of EGFR signaling. The ectopic wing vein phenotype of Socs44A misexpression (A) is rescued 
by reduction of Egfr (B), Sos (C) or Ras85D (D), positive effectors of EGFR signaling. In contrast, reduction of argos, a negative 
regulator of EGFR signaling, enhances the Socs44A misexpression phenotype (E). The argos allele combined with en-GAL have 
no effect on venation without the UAS-Socs44A transgene (F). Certain heteroallelic Egfr mutants possess a distinct wing vein 
phenotype, whereby the anterior crossvein and the central portion of L4 is missing (G, arrows). Engrailed-driven misexpression 
of argos has a similar phenotype (H and J). Concurrent misexpression of Socs44A antagonizes argos misexpression to restore 
near normal wing venation (I and K). The designation "2xUAS-argos" refers to presence of 2 total copies of the transgene in 
the genome.
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resulting wing phenotype mimicked that seen when only
a single copy of argos was used in the misexpression assay
(Fig. 5J) or what is seen in heteroallelic Egfr mutants (Fig.
5G). Finally, concurrent misexpression of a single copy of
the argos and Socs44A transgenes produced a nearly
wildtype wing (Fig. 5K). These data indicate that Socs44A
expression is able to suppress argos misexpression pheno-
types in a dose-dependent manner. It should be noted
that concurrent misexpression of UAS-GFP did not affect
the UAS-argos phenotype (not shown), indicating that the
suppression by UAS-Socs44A was not merely a conse-
quence of titrating GAL4.

Although these misexpression data indicate that Socs44A
can enhance EGFR signaling, they do not necessarily dem-
onstrate that this is a normal function of Socs44A. To
address whether this is an endogenous function of
Socs44A, we assayed the influence of a deficiency that
removes Socs44A in the argos misexpression background.
Engrailed-GAL4 misexpression of argos produces a range of
phenotypic classes in which parts or all of L4 and/or the
posterior cross-vein are missing (Fig. 6A). Addition of a
single copy of a deficiency that removes Socs44A shifted
the distribution of phenotypes to the more severe classes
(Fig. 6B). In contrast, addition of an overlapping defi-
ciency that does not include the Socs44A locus did not
show such a shift. While it cannot be unambiguously
stated that this effect is due to loss of Socs44A specifically,
these results are consistent with the misexpression analy-
ses and suggest that Socs44A normally plays a role in
enhancing EGFR signaling in the Drosophila wing.

Socs36E and Socs44A have different effects on oogenesis
Evidence presented here and elsewhere indicates that
Socs36E and Socs44A can downregulate JAK signaling in
the wing [28]. However, the ability of specific mammalian
SOCS to regulate JAK activity has been observed to differ,
depending upon the tissue examined [43]. To determine
whether there is a similar context specificity for the Dro-
sophila SOCS, regulation was examined in another tissue
in which JAK and EGFR functions have been well charac-
terized. Both pathways are required for proper patterning
of the follicular epithelium surrounding developing egg
chambers during oogenesis [26,33,44-47]. One of the
distinct cell populations requiring these pathways is the
posterior terminal follicle cells [33]. These cells are molec-
ularly identified by the expression of the ETS domain tran-
scription factor, pointed [47-49]. In clones of cells that lack
hop activity (Fig. 7C,7D,7E) or egfr activity (not shown),
there is a loss of pnt-lacZ expression, indicating failure to
specify the posterior terminal follicle cells.

To test whether Socs36E and Socs44A can downregulate
JAK or EGFR activity during oogenesis, clones of cells
misexpressing these genes in developing egg chambers

were examined. In clones misexpressing Socs36E at high
levels in posterior cells of the developing egg chamber,
there was a dramatic loss of the pnt-LacZ marker (Fig.
7F,7G,7H). This loss was restricted to only those cells that
misexpressed Socs36E and did not influence neighboring
cells. These results indicate that JAK and/or EGFR signal-
ing was attenuated by Socs36E activity. In contrast, for
cells in which Socs44A was misexpressed in a similar fash-
ion, there was no reduction of pnt-LacZ expression (Fig.
7I,7J,7K). We conclude that Socs44A is unable to attenu-
ate JAK activity in the follicle cells. This ability of Socs44A
to regulate JAK signaling in the wing, but not in the ovary,
indicates that SOCS activity in invertebrates can also be
context specific. Furthermore, the differential ability of
the fly SOCS to attenuate JAK and EGFR signaling in the
ovary demonstrates distinct functions for these two
proteins.

Discussion
The Drosophila genome encodes three homologues of the
vertebrate SOCS. Each homologue contains the hallmark
modular architecture, with a central SH2 domain fol-
lowed by a carboxy-terminal SOCS domain. The genes are
dispersed in the genome and are referred to by their cyto-
logical locations as Socs16D, Socs36E, and Socs44A. These
fly SOCS genes are most similar to the vertebrate SOCS5,
6, and 7, none of which has been functionally
characterized to date. Socs36E is the most similar in pro-
tein sequence to a vertebrate SOCS, SOCS5, but shares
many characteristics with the extensively studied mam-
malian SOCS genes, SOCS1-3 and CIS. Each of these has
been shown to be transcriptionally responsive to JAK
pathway stimulation and act to downregulate JAK activity
in a classical negative feedback loop [reviewed by [9]]. On
the other hand, Socs44A is most similar to the less studied
vertebrate genes, SOCS6 and 7. In this study, we
demonstrated that Socs44A has properties that
distinguish it from Socs36E and the canonical mamma-
lian SOCS (compared in Table 3). First, the expression of
Socs44A was not dependent on JAK pathway activity. Nev-
ertheless, Socs44A was able to downregulate the JAK cas-
cade in some, but not all tissues. In addition to regulating
JAK pathway activity, Socs44A genetically interacts with
the EGFR/MAPK pathway, acting to enhance its activity.

The Drosophila genome encodes three SOCS genes
Phylogenetically, SOCS fall into three general clades. The
first includes the best studied vertebrate SOCS, CIS and
SOCS1-3. Interestingly, there are no representatives of this
group found in the fly genome. Vertebrate SOCS of the
remaining two clades have yet to be fully characterized
with regard to their physiological roles, as well as
mechanistic roles in JAK/STAT signaling. Socs36E is most
similar to the vertebrate SOCS of the second clade, con-
taining SOCS4 and SOCS5. It shares similarity not only in
Page 9 of 15
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Socs44A deficiencies enhance argos misexpression phenotypesFigure 6
Socs44A deficiencies enhance argos misexpression phenotypes. (A) The engrailed-GAL4 driven misexpression of argos 
produces a range of phenotypes which were classified based on severity. The combination of en-GAL and Df(2)CA53 had no 
effect on venation. (B) In flies that were also heterozygous for Df(2)CA53, which removes the Socs44A locus, the distribution of 
phenotypes was significantly shifted to more severe classes as compared to animals heterozygous for Df(2)Drlrv18, an overlap-
ping deficiency that does not remove Socs44A or for Sco, a chromosome wild-type for the 44A region.
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the SH2 and SOCS domain, but also in the region
upstream of the SH2 domain. Mutational analysis has
shown that SOCS5 inhibits IL-6 [50], whereas nothing is
known about the activity of SOCS4. Socs44A falls into the
third clade occupied by vertebrate SOCS6 and SOCS7, as
well as the only C. elegans homologue. SOCS6 has been
shown to downregulate the insulin receptor [51,52]. Very

little is known about SOCS7, other than its ability to inter-
act with Nck, Ash, and PLCγ [53]. Because of the relative
lack of information about these latter two clades, study of
the Drosophila SOCS may identify general properties of
these homologues that span each clade.

Socs36E and Socs44A have different activities during oogenesisFigure 7
Socs36E and Socs44A have different activities during oogenesis. In wild-type ovaries (A, B), pnt-lacZ (red) is 
expressed in a gradient in the posterior terminal cells. Cells that lack hop activity (marked by a lack of green, see outline), also 
fail to express pnt-lacZ (C-E). Similarly, UAS-Socs36E misexpressed in clones (marked by presence of green, see outline), lack 
pnt-LacZ expression (F-H, see insets). In contrast, UAS-Socs44A misexpressed in clones (marked by presence of green, see 
outline), had no effect on pnt-LacZ expression (I-K). DAPI nuclear staining is shown in blue.

Table 3: Comparison of Drosophila SOCS.

Socs36E Socs44A

Expression-Embryogenesis Matches known pattern of JAK activation, including pair-
rule stripes, gut, and tracheal pits

Distinct from JAK activation, with possible 
exception of trachea very late

Expression- Oogenesis Matches known pattern of JAK activation, with graded 
expression highest at anterior and posterior poles

Distinct from JAK activation, with expression only 
in nurse cells

Requirement for expression Requires JAK signaling for embryonic expression Does not require JAK signaling for embryonic 
expression

Inducibility Inducible by JAK activity in embryos Not inducible by JAK activity in embryos
Regulation of JAK activity Can repress JAK signaling in wing and possibly in 

follicle cells of ovary
Can repress JAK signaling in wing, but cannot in 
follicle cells

Regulation of EGFR activity Can repress EGFR signaling in wing and possibly in 
follicle cells of ovary

Can enhance EGFR signaling in wing

The contrasting properties of Socs36E and Socs44A are summarized.
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Although mammalian genomes encode large families of
specific JAK pathway components, Drosophila has only
one characterized receptor, domeless, one Janus kinase,
hop, and a single STAT, stat92E. Despite the simplicity of
the transduction machinery for the JAK pathway, there are
three SOCS genes in flies. Furthermore, there is only one
Drosophila homologue of the PIAS negative regulatory
family, zimp, and it is also capable of inhibiting JAK path-
way activity [54,55]. In an organism with few functionally
redundant genes, why are there three Drosophila SOCS?
Two possible explanations for the apparent abundance of
SOCS are that the different Drosophila SOCS may be
expressed differently or they may differently regulate sign-
aling through pathways other than JAK. Indeed, we pre-
sented evidence for both of these distinctions for Socs36E
and Socs44A.

Socs44A does not participate in an auto-regulatory 
negative feedback loop
It has been demonstrated that, like the classical vertebrate
SOCS genes, Socs36E is transcriptionally responsive to JAK
pathway activity [[29] and this work]. In both embryos
and ovaries, the expression of Socs36E mirrors the known
pattern of JAK activation and, indeed, altered JAK
activation in the embryo elicits a transcriptional alteration
in Socs36E. Unlike Socs36E, the expression of Socs44A did
not match that of JAK induction. In the embryo, detecta-
ble Socs44A expression was absent until late stages of
embryogenesis, when it was restricted to the developing
trachea. JAK activation does occur in the tracheal pits and
has been implicated in tracheal morphogenesis [35,36],
but Socs44A expression was lacking in the other tissues of
the early embryo where JAK activation has been described.
More telling was the finding that neither reduction nor
expansion of JAK activation in the embryo had any effect
on Socs44A expression. This disparity between Socs44A
and Socs36E support the hypothesis that these genes are
not redundant.

Despite the difference in expression of the two SOCS
genes, both are able to downregulate JAK activity in some
tissues. Misexpression of Socs36E is able to suppress JAK
activity in the developing adult (imaginal) wing and tho-
rax [28]. Similarly, misexpression of Socs44A reduced JAK
activity in the imaginal wing, as illustrated by the
enhancement of that phenotype by reduction of
endogenous hop. Furthermore, misexpression of Socs44A
rescued wing vein loss resulting from misexpression of
hop. Perhaps most importantly, introduction of
deficiencies that remove Socs44A rescued a hop wing vein
phenotype. Taken together, these data strongly suggest
that Socs44A downregulates JAK pathway activity during
normal wing development. However, misexpression of
Socs44A had no effect on expression of a marker for JAK
pathway activity during oogenesis. This indicates that

there is context specificity to SOCS action in Drosophila, a
phenomenon that has been observed in the study of
mammalian SOCS [43]. In contrast, misexpression of
Socs36E was able to downregulate expression of the pnt-
lacZ marker in follicle cells, although it cannot be distin-
guished whether this is due to reduction of signaling
through JAK or EGFR. However, because Socs36E is
expressed in the pattern of JAK activation in follicle cells,
it is likely that it has a function in regulating JAK signaling
in the ovary.

Socs44A upregulates EGFR/MAPK signaling
Another distinction we noted between the Drosophila
SOCS was in their abilities to regulate signal transduction
cascades in addition to JAK/STAT. Precedence for such
additional roles for vertebrate SOCS include regulation of
Tec, Vav, TCR, c-kit, and FAK mediated signaling [56-60].
It has been previously shown that Socs36E can suppress
signaling not only through the JAK pathway, but also
through the EGFR/MAPK pathway [28]. Socs44A was also
able to regulate EGFR/MAPK signaling, but acted in the
opposite manner. Socs44A was able to rescue misexpres-
sion of the EGFR negative regulator argos in a dose-
dependent manner. Furthermore, mutations in EGFR
pathway components rescued Socs44A misexpression
phenotypes. Importantly, a reduction of endogenous
Socs44A activity enhanced the argos phenotype. Taken
together, these data suggest that a normal function for
Socs44A is to enhance the EGFR pathway. A potential
mechanism for this genetic interaction can be found in a
recent report describing physical interaction between
SOCS3 and the p120 RasGAP [61]. p120 RasGAP, a
GTPase-Activating Protein, is an antagonist of MAPK sign-
aling that is responsible for inactivating Ras. It does so by
stimulating Ras GTP hydrolytic activity, leaving Ras in a
GDP-bound, inactive configuration. Upon interaction
with SOCS3, p120 RasGAP is unable to inactivate Ras,
resulting in an upregulation of the EGFR/MAPK pathway.
Perhaps Socs44A is acting in an analogous manner.
Indeed, there are three candidate RasGAP genes in the fly
genome. Biochemical analyses will be required to address
this hypothesis.

Conclusions
There are three Drosophila SOCS, all of which have greatest
homology to the two classes of vertebrate SOCS that are
least well characterized. One of these, Socs36E, is a mem-
ber of the vertebrate SOCS4/5 class and has been previ-
ously characterized [28,29]. It is similar to classical SOCS
in that its expression is regulated by activity of the JAK
pathway and that it functions to suppress JAK activity.
Here we provided the initial characterization of Socs44A,
a member of the vertebrate SOCS6/7 class. In contrast to
Socs36E, activation of the JAK pathway was neither neces-
sary nor sufficient for the expression of Socs44A. We con-
Page 12 of 15
(page number not for citation purposes)



BMC Cell Biology 2004, 5:38 http://www.biomedcentral.com/1471-2121/5/38
clude that Socs44A is unlike classical SOCS because it
does not participate in a JAK pathway negative feedback
loop. Still, Socs44A was capable of repressing JAK signal-
ing, but that activity was limited to certain tissues. This
context specificity is a feature that is shared with classical
SOCS. Finally, Socs44A and Socs36E had opposite effects
on EGFR/MAPK signaling. The enhancement of MAPK
signaling that was seen for Socs44A is reminiscent of the
influence of SOCS3 on this pathway, which is exerted
through physical interaction of SOCS3 with p120 Ras-
GAP. Perhaps a similar mechanism explains the enhance-
ment of MAPK activity due to Socs44A. The differences
observed here between Socs36E and Socs44A strongly
suggest that they have distinct functions in the fly. Fur-
thermore, the differences between Socs44A and the well
studied class of canonical vertebrate SOCS may be repre-
sentative of undiscovered distinctions amongst the three
classes of vertebrate SOCS.

Methods
Comparison of SOCS sequences
Putative Drosophila SOCS genes were identified using a
simple tBLASTn 2.0 query with a consensus sequence for
the vertebrate SOCS domains [30] used to probe the com-
plete genome contig sequences available from the BDGP.
Identified homologies were compared with the predicted
gene structures reported as "CG" sequences in the annota-
tions of the genomic contigs. The translated sequences of
the three putative SOCS gene genomic regions were
scanned manually for possible alternative structures. The
sequences surrounding the SOCS and SH2 domains were
used to generate primers for the amplification of DNA cor-
responding to each putative gene. Amplification products
were cloned and used to generate probes for the identifi-
cation of cDNAs as described below. Phylogenetic com-
parison of SOCS proteins was performed using AlignX
(VectorNTI 9.0), based on the ClustalW algorithm, to gen-
erate protein alignments and a neighbor-joining algo-
rithm to create a phylogenetic tree.

Identification of cDNAs
A cDNA library constructed from RNA of 12–24 hr old
embryos [62] was screened using 800bp of genomic DNA
derived from the 3' end of the Socs36E coding region,
including the SOCS box and SH2 domain. Two independ-
ent clones (Genbank accessions AF435838 and
AF435839) were recovered, with the former being struc-
turally similar to an EST from the BDGP (clot #7147). The
BDGP also recovered two cDNA clones representing
socs44A which have been designated as clot #8463. We
have determined the complete sequence of the longer
clone, LP02169 (Genbank AF435923).

In situ hybridizations
In situ hybridizations to embryos were performed as pre-
viously described [32]. Digoxigenin labeled probes for
Socs36E and Socs44A were generated from the 5' ends of
the respective cDNAs and did not include the coding
region for the conserved SH2 and SOCS domains. Germ-
line clone mutants for the hopc111 null allele were gener-
ated using the ovoD1 dominant female sterile technique
[34]. Embryos derived from mutant mothers were col-
lected overnight and prepared for hybridizations as previ-
ously indicated. Embryos misexpressing upd in a specific
pattern were generated by crossing females carrying a
UAS-upd transgene with males heterozygous for paired-
GAL4, which expresses GAL4 in the seven stripe pair-rule
pattern of the paired gene. Progeny were collected and
hybridized as above. Trachea in germline clone-derived
hopc111 embryos were visualized with the trh10512 enhancer
trap [63] using anti-β-gal antibody (Cortex Biochemical,
at 1:1000) as previously described [26].

Misexpression studies
To express Socs36E and Socs44A under control of GAL4,
the full-length cDNAs described above were cloned into
the pUAST vector [64]. Germline transformations were
performed [65] and transgenic lines established. For wing
phenotypes, engrailed-GAL4 (e16E-GAL) was used to drive
expression of the transgenes in the posterior compart-
ment. Wings were dissected and mounted in Hoyer's
medium [66] for photography.

Ovarian clones of the null allele, hopc111, were generated
by hsFLP mediated mitotic recombination as previously
described [26,33]. Misexpression clones of Socs36E and
Socs44A were generated using a GAL4 flip-out cassette
[67]. Genotypes of those animals were w [hsFLP]1;
[Act5C>y>GAL4] [UAS-GFP.S65T]/ [UAS-socs36E]11.2
and w [hsFLP]1; [Act5C>y>GAL4] [UAS-GFP.S65T]/+;
[UAS-socs44A]/ pnt-LacZ, respectively. For each, ovaries
were fixed and stained with anti-β gal and anti-GFP as pre-
viously described [26,33].

Microscopy
All in situ hybridization and wing images were acquired
using a Spot Camera (Diagnostic Instruments) on a Nikon
E800 microscope using differential interference contrast
(DIC). A Leica TCS-SP laser scanning confocal microscope
was used to capture all fluorescence micrographs. All
images were then exported to Adobe Photoshop for
manipulation and annotation.
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