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Abstract

Background: Splicing variants of human cathepsinB primary transcripts (CB(-2,3)) result in an
expression product product which lacks the signal peptide and parts of the propeptide. This
naturally truncated A3!'CB is thus unable to follow the regular CB processing and sorting pathway.
It is addressed to the mitochondria through an activated N-terminal mitochondrial targeting signal
instead. Although A5'CB is supposed to be devoid of the typical CB enzymatic activity, it might play
a role in malignancies and trigger cell death/apoptosis independent from the function of the regular
enzyme. Cytoplasmic presence of the mature CB might occur as a result of lysosomal damage.

Results: We investigated such "aberrant” proteins by artificial CB-GFP chimeras covering various
sequence parts in respect to their enzymatic activity, their localization in different cell types, and
the effects on the cell viability. Unlike the entire full length CB form, the artificial single chain form
was not processed and did not reveal typical enzymatic CB activity during transient overexpression
in large cell lung carcinoma cells. A3'CB was found predominantly in mitochondria. In contrast, the
shorter artificial CB constructs localized in the cytoplasm, inside the cell nucleus, and in the
midbodies of dividing cells. Bleaching experiments revealed both mobile and immobile fractions of
these constructs in the nucleus. Nuclear accumulation of artificially truncated CB variants led to
disintegration of nuclei, followed by cell death.

Conclusion: We propose that cell death associated with CB is not necessarily triggered by its
regular enzymatic activity but alternatively by a yet unknown activity profile of truncated CB.
Cytoplasmic CB might be able to enter the cell nucleus. According to a mutational analysis, the part
of CB that mediates its nuclear import is a signal patch within its heavy chain domain. The results
suggest that besides the N-terminal signal peptide also other CB domains contain patterns which
are responsible for a differentiated targeting of the molecule, e.g. to the mitochondria, to the
nucleus, or to vesicles. We propose a hierarchy of targeting signals depending on their strength and
availability. This implies other possible transport mechanisms besides the usual trafficking via the
mannose-6- pathway.

Background rily assumed function has changed: they "can no longer be
Lysosomal cysteine peptidases play an important part in  considered as simple garbage disposers" [1], but do also
intra- and extracellular protein degradation. Their prima-  function as key enzymes in cardinal processes of
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Expression and processing of CB. A. Chromosomal location (adapted from NCBI/NIH) and exon-intron organization of
the hCB gene (top panel, modified from [19]), alternative splicing variants of CB primary transcripts (centre panel, modified
from [56]), and domain organization of the entire translation product (bottom panel). Lightened sectors: non-coding exons (5'-
UTR and 3'-UTR); darkened sectors: translated CB regions. The transcript population CB(-2) encodes the entire CB sequence,
the alternative transcript population CB(-2, 3) leads to the truncated translation product A5!CB which lacks the complete sig-
nal sequence (pre) as well as parts of the proregion (N'pro). In vivo, the single chain form of the native CB is mainly split into
the light and the heavy chain while the C'pro-region is cut off during secretion. B. Processing of intrinsic CB (C, control) and of
transiently overexpressed A72CB-EGFP (I) and CB(SC)-EGFP (2) in LCLC-103H cells (on the left: @-CB-Ab; on the right: -
GFP-Ab). The immunoblot reveals distinct native CB fragments at similar expression levels of ~3| kDa (single chain form), ~26
kDa (heavy chain), and several isoforms thereof indicated by weaker adjacent bands. Unspecific low molecular mass protein
bands below signify degradation products. Additional expression products of ~62 kDa (a-CB, a-GFP) in the samples from the
transfected cells represent entire unprocessed sequences. The A72CB-EGFP band runs slightly slower than the CB(SC)-EGFP

band. Weak bands at ~22 kDa (a-GFP) indicate that a small amount of the EGFP tag is removed from the fusion proteins.

homeostasis and cell demise. This is particularly valid for
the ubiquitous peptidase cathepsinB (CB, E.C.3.4.22.1).
In higher organisms, this enzyme is present and active in
almost all tissue types. For a long time it was therefore
considered as an unspecifically degrading peptidase.
Research of recent years has brought up specificity [2] and
its implication in pathologic processes as arthritis [3] or
cancer [4-6]. Furthermore, these investigations have
revealed the pivotal role of CB in a number of apoptotic
pathways [7-18].

The human CB gene is composed of 12 or 14 exons
[19,20] (Fig 1A, top panel); its promoter is assumed to be
regulative [21,22]. The regular mRNA population encodes
a 48 kDa polypeptide which contains pre- (signal), pro-,
and two functional domains (CB(FLM); Fig 1A, bottom
panel). The signal peptide and glycosylated residues target
the protein via ER and Golgi into the lysosomes by the
mannose-6- pathway. During this process a 31 kDa single

chain or 25/5 kDa double chain glycosylated polypep-
tides are generated. Both forms exhibit enzymatic activity,
albeit with different efficiency [19].

A number of mRNA variants may be generated by gene
splicing (exon skipping) (Fig 1A, centre panel). The regu-
lation of the splicing process remains unclear. All splicing
variants might be expressed concomitantly [23]. They can
be subdivided into two subpopulations which result in
two distinct translation products [19,20,23,24]. The first
species lacks exon2 (CB(-2)), which does not affect trans-
lated regions of the entire CB and appears to be a more
easily transcribed message [19]. The second one lacks
exons2 and 3 (CB(-2,3)). As a result of an additional ini-
tiation codon at position 53 within exon4, this message
can give rise to the naturally truncated translation product
A51CB (the original term from the literature is used here).
Recent publications prove that A5ICB has no regular CB
enzymatic activity [25,26]. Such truncations are not
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exceptional among cysteine peptidases. Recently, there
have been discovered other truncated cathepsins like a
cathepsinH progeny lacking parts of the signal peptide
with unknown functions and differentiated intracellular
distribution [27] and a truncated form of cathepsinL
devoid of the signal peptide with nuclear targeting and a
specific cleaving activity [28]. According to present knowl-
edge and interpretations, the truncated message of CB is
linked to pathological findings, in so far as the respective
expression product was found more prominently
expressed in tumours [24] or arthritic tissues/cells [23].
However, it is not clear whether it promotes malignancies
or is a means of defence.

Although the detection of CB outside the lysosomes was
primarily considered atypical, its extracellular and plasma
membrane associated appearance is now well docu-
mented [4,29]. Release of functional CB from lysosomes
is connected with apoptosis [13,18]. It is uncertain,
whether this can be attributed to a particular fraction of
the enzyme.

Earlier on, CB was also found to be associated with the
nucleus by immuno- and enzyme cytochemistry [30,31]
and by biochemical methods [16,32,33]. The truncated
AS51CB was identified in association with the cytoplasmic
side of the nuclear envelope [24]. Nuclear fractions of CB
could be linked with cell death [7,12,14,33,34]. It remains
unclear, whether they represent the mature CB released
from the lysosomes or the truncated A5!CB. However,
detection methods based on polyclonal antibodies do not
discriminate between different variants of CB, just as little
as biochemical assays of cellular organelles do between
inside and attached (outside) activity. Therefore, the
results mentioned above should be considered with care.
Both constraints can be overcome by living cell micros-
copy of genetically labelled samples. A>!CB tagged by GFP
appears accumulated in mitochondria; its overexpression
provokes nuclear fragmentation and cell death [36]. Mito-
chondrial localization is not surprising since the first 20
amino acids of the residual proregion contain a mito-
chondrial targeting signal (MTS) [25]. These results point
out a specific role of A5ICB in cell death pathways besides
those, for which the lysosome-released canonical forms of
the peptidase might be responsible.

The aim of our studies was to characterize cytoplasmic CB
forms lacking the ER signal peptide within living cells.
Basically, there are two situations in which cytoplasmic
CB can occur in vivo: (i) as a mature message product
resulting from lysosomal leakage [37-40] and (ii) as natu-
rally truncated A5!CB resulting from alternative splicing
[19,23-25,36]. We investigated the intracellular transport
of various recombinant artificial CB forms in living cells
by GFP labelling and by spectroscopic methods. Living
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cell fluorescence microscopy now offers a wide range of
techniques to collect information about cellular processes
and will surpass indirect labelling and studies on fixed
material. Our findings support a nuclear targeting of CB
produced from incomplete messages and they hence
partly go together with the data mentioned before
[24,25,36]. We could further elucidate the nuclear trans-
port and the stability of nuclear binding by mutational
analysis and light microscopy. Finally, we found a link to
cell death for the truncated polypeptides synthetically
generated from incomplete messages.

Results

Posttranslational cleavage and enzymatic activity
Artificially truncated CB constructs such as A72CB or the
single chain form of CB, CB(SC), were obtained from an
established human cDNA full-length message (FLM) by
PCR, cloned into a eukaryotic expression vector, and
tagged by distinct fluorescent protein (FP) variants. These
genetic chimeras were then used for mutational analysis,
localization, mobility, and functional studies.

Light and heavy chain (LC and HC) are linked by two res-
idues, which are removed in vivo during the zymogene
processing. A72CB resulted from an internal Kpnl-site
upstream the CB(SC) sequence and revealed a fluorescent
expression product in cells implying a regular in-frame
translation. The expected alternative translation origin lies
seven residues before the first codon of CB(SC) at the M73
position. The polypeptide that would result from this
message lacks the complete signal peptide and that part of
the N-terminal proregion which encodes the MTS. It is the
most similar in size to the 21 amino acids longer native
A51CB encoded by the CB(-2,3) transcript [19] in respect
to all the other constructs used.

Neither A72CB-EGFP nor CB(SC)-EGFP was posttransla-
tionally cleaved in LCLC-103H cells during their transient
expression as specified by SDS-PAGE and Western Blot
analysis (Fig 1B). In addition, only a small fraction of the
C-terminal fluorescent protein tag appeared to be cleaved
off confirming the high stability of the constructs, which
was important for the further studies. Both had similar
apparent molecular masses of ~62 kDa. The native CB
revealed a typical banding pattern primarily representing
the single and the heavy chain forms. The amount of
native CB remained unaffected by the transient overex-
pression of the recombinant products.

Both in vive and in vitro studies did not reveal any CB spe-
cific enzymatic activity during transient overexpression of
CB(SC) variants. In contrast, permanently expressed
CB(FLM)-FP was properly processed and exhibited signif-
icantly elevated levels of enzymatic activity: In LCLC-
103H-cells we measured 250 pEU/(ug protein). The cell
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Figure 2
Intracellular localization of recombinant CB(FLM). LCLC-103H cells transiently expressing CB(FLM)-EGFP revealed a
strongly developed reticular signal distribution. Besides the ER, the nuclear envelope, the Golgi apparatus, and perinuclear
granules were labelled (A: phase contrast; B: fluorescence channel). Obj. 40%/1.30 Oil; post deconvolution.

http://www.biomedcentral.com/1471-2121/6/16

clone with the highest CB(FLM)-FP expression revealed
2570 pEU/(ug protein). Nuclei were isolated from this
cell clone and non-transfected control cells. We found
1150 and 8.4 xEU/(ug protein), respectively. Microscopy
revealed that this activity is located in the nuclear
envelope.

Naturally truncated 45'CB

The intracellular localization of CB was first studied by a
CB(FLM)-EGFP construct (Fig 2). As expected, the expres-
sion product was directed into the ER and was mainly
found within the Golgi network and the vesicles. Further-
more, we investigated the alternative splicing variant
A51CB tagged by EGFP [25,36]. Expression of this con-
struct in the LCLC-103H cells resulted in strong fluores-
cence signals consistent with mitochondrial staining (Fig.
3). Their intensity was well above that of the cytosolic
background. However, also nuclei exhibited fluorescence,
whereas nucleoli were devoid of signal. Quantification of
the fluorescence revealed the following order of intensity:
mitochondria > nucleus > cytoplasm. The signal ratios are
illustrated by an intensity profile of a ROI across an
expressing cell (Fig. 3, inset).

Intracellular localization of the single chain form

A number of established cell lines and freshly isolated
endothelial cells were transfected with the chimeric single
chain form CB(SC)-EGFP. The transient expression was
analysed by fluorescence microscopy the following days.
Pure EGFP, which lacks any targeting sequences, was used
as control. In all cases, the artificially truncated CB with-

out its signal peptide localized significantly different from
the entire CB(FLM)-EGFP construct and A>!1CB.

The CB(SC)-EGFP construct appeared in the cytoplasm,
but not in the ER or the Golgi of LCLC-103H cells (Fig 4A,
B). Apart from that, it was enriched in perinuclear gran-
ules and prominently in cell nuclei showing either a
homogeneous or a patterned distribution. The nucleoli
showed a speckled staining pattern (Fig 4G, H). Fluores-
cence was also detected in the matrix of the midbody
(Fleming-body) which is a persistent remnant of the spin-
dle apparatus of mitotic cells and contains nuclear mate-
rial among others (Fig 4C-G).

Transient transfection of other cell lines than LCLC-103H resulted in

similar localization of CB(SC)

Hela cells and Hep-G2 hepatocytes produced higher
numbers of perinuclear granules. Wi-38 fibroblasts
showed vesicular structures even in peripheral regions of
the cells (pseudopodia), but lower accumulations in the
nuclei. The fluorescence distribution was strongly associ-
ated with the nucleus in MDCK cells. The localization in
the COS-7 cells was more homogeneous in the cytoplasm
with no particular accumulations and only low signals in
the nucleus. Primary endothelial HDMEC contained
intensive, punctual signals in the cytoplasm; nuclei were
not involved. Hence, with the exception of HDMEC cells
all cell types investigated revealed no principle qualitative
differences. The absence of nuclear fluorescence in the
primary endothelial cells might depend on a retarded or
dysfunctional transport mechanism.
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Figure 3

Intracellular localization of recombinant AS!CB.
LCLC-103H cells with transient A3!CB-EGFP expression
revealed an intensive mitochondrial distribution of the fluo-

rescence signals. Beside a slight cytoplasmic background
there was also a signal level in the nucleoplasm, which
reached ~40% of the mitochondrial fluorescence intensity.
The nucleoli were lacking any fluorescence. A profile cut
across the cell elucidates the intensity proportions. The
arrow tips mark the nuclear boundary. The intensity gap
within this region represents a transected nucleolus. For
deconvolution, 23 optical sections were used, which have
been acquired with a distance of 200 nm. WFM; obj. 63%/1.4
Oil.

The nuclear accumulation of the CB(SC)-EGFP polypep-
tide, which is consistent for different cell types from vari-
ous species, suggests the presence of a nuclear targeting
mechanism. We did not find any common nuclear locali-
zation signal (NLS) within the CB sequence by appropri-
ate computational analysis (PSORT v6.4, © K. NAKAI,
University of Tokyo, Japan). In case of a signal patch, the
abundance of nuclear targeting would ask for a specific
folding of the polypeptide exposing the patch on its sur-
face. The conformation of the CB(SC)-EGFP polypeptide
is difficult to predict. In contrast to CB(FLM)-EGFP, which
is folded cotranslationally within the ER, it must be deter-
mined by the conditions prevailing in the cytoplasm. To
exclude a possible impact of the fluorescent protein
sequence on the localization and to prove the integrity of
the single chain form (in case of degradation or process-
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ing, respectively), further constructs were produced: (i)
FP-CB(SC)-FP is flanked by two distinct FPs, (ii) myc-
CB(SC)-FP includes a N-terminal myc-Ab epitope (EQK-
LISEEDL), and (iii) myc-CB(SC) contains this N-terminal
myc tag only. FP-CB(SC)-FP showed the same distribu-
tion as the single-tagged construct in both fluorescence
channels (Fig 4C, D). Application of a-myc and o-GFP
Abs in immunocytochemical experiments to fixed LCLC-
103H cells verified a strong colocalization of both signals.
The product of myc-CB(SC) colocalized with CB(SC)-
EGFP in the nucleus, in cytoplasmic granules, as well as in
the midbody (Fig 4E, F). The dual-marker-construct myc-
CB(SC)-EGFP revealed the same signal overlap. These
results suggest that in most cases (i) neither the type (ii)
nor the size of the tag (iii) nor the tagging site do exhibit
significant impact onto the structure and the localization
of CB(SC). In addition, (iv) degradation or processing of
the CB single chain form into light and heavy chains
under transient expression conditions is unlikely. This
was already exposed by the Western Blot analysis (Fig 1B).

Nuclear binding studies

The mobility of GFP-tagged CB(SC) was studied by in vivo
photobleaching experiments. Two-photon laser scanning
microscopy (TPM) was applied to register loss of fluores-
cence through continuous irradiation or fluorescence
recovery after photobleaching (FRAP), respectively. TPM
confers less damage to the fluorochrome as well as to cells
and thus prolongs the effective observation time. For
comparative purposes, EGFP and two EGFP chimeras -
the ribosomal transcription initiation factor TIF1A and
the histone H2A - were taken as controls. Their diffusion
and binding characteristics can be deduced from their
known localization and functional properties. All controls
appear in the nucleus to some extent and represent differ-
ent types of nuclear binding: EGFP is known to have no
binding capacity and to diffuse freely [41]. The transcrip-
tion factor has a mobile (nucleoplasm) and an immobile
(nucleoli) fraction. Histones are tightly bound in the
nucleus [42]. Constitutively (H2A-EGFP) or transiently
(other constructs) expressing LCLC-103H cells were
examined. The obtained serial scans were evaluated in
respect to their mean grey values by automated image
processing routines.

Continuous photobleaching

A nuclear region was illuminated repeatedly and the fluo-
rescence depletion was monitored simultaneously within
this ROI in a series of images and evaluated as described
in the methods section. The measurements are compiled
in (Fig 5B). Decrease of EGFP fluorescence was low, after
1 min of irradiation only 10% of the original intensity
have disappeared. This indicates the absence of an immo-
bile fraction. The bleaching characteristics of TIF1A-EGFP
were comparable to those of EGFP except of its drastic
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Figure 4

Intracellular localization of recombinant CB(SC). Transient overexpression in LCLC-103H cells visualized by WFM (A-
F) or OPM (G, H). A, B. Cells expressing CB(SC)-EGFP (green) were counterstained with Hoechst33342 (blue) and Lys-
oTracker Red (red). Diffuse, vesicular, and granular EGFP fluorescence signals were found in the cytoplasm and highly enriched
inside the nucleus sparing out the nucleoli as indicated by the DNA staining. The reticular and vesicular staining of the lyso-
somal marker adjacent to the nuclear indentation did not overlap with EGFP signals. Obj. 40%/1.30 Oil. Processing of recom-
binant CB(SC) and influence of the fluorescent protein marker or the total molecule size on its localization were proven by
differential tagging (N- or C-terminus, respectively) as well as by means of immunocytochemistry using a N-terminal myc-
epitope. C, D. Double-tagged ECFP-CB(SC)-EYFP was distributed mainly in the nucleus analogously to CB(SC), which was
marked at its C-terminus only. Accumulates were found within the nucleus and adjacent to it. Fluorescence also appeared in
the ring shaped midbody matrix (enlarged region in the upper right corner). Obj. 40%/0.60; processed by deconvolution. E, F.
Cells coexpressing myc-CB(SC) and CB(SC)-EGFP were fixed by acetone/methanol and immunostained against myc and GFP.
A tight colocalization of both was found (E and F); the constructs were found mainly in the nucleus and stained the midbody
(marked by the arrowhead; see inset). Obj. 40%/0.60. G, H. Optical sections of CB(SC)-EYFP expressing cells were subjected
to spatial reconstruction (G: 3D-visualisation; H: orthogonal projection). Isosurfaces obtained by arbitrary fluorescence inten-
sity thresholds represent distinct compartments (granules: opaque; nucleus and midbody: transparent). In the given cellular
state, only a weak expression in the cytoplasm is found. The main signals arise from granular inclusions within the nucleus
including distinct regions inside the nucleoli (marked by dashed lines in H) as well as from enrichment in the midbody (arrow).
Obj. 63%/1.32 Oil. ROI: 72 x 59 x || um3 (= 464 x 380 x 25 voxels).
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Figure 5

Nuclear diffusion and binding of recombinant CB(SC). Fluorescence was extinguished by TPM within distinct nuclear
regions and the diffusion and binding characteristics of GFP-tagged constructs were determined. A. The approach is described
by means of the GFP-tagged histone-construct H2A-EGFP. In the continuous photobleaching experiment a 2 x 2 yum? nuclear
region was scanned consecutively and the loss of fluorescence caused by the irradiation was monitored simultaneously (see
enlarged section). In the FRAP experiment, a region of same dimensions was bleached by continuous irradiation. A time series
was grabbed subsequentially from a larger detail of the nucleus (first and last scan are shown). The fluorescence within the
bleached region as well as in an untreated control region was measured and normalized according to equation (). B. Continu-
ous bleaching curves of CB(SC)-EGFP, ECFP-CB(SC)-EYFP as well as of the control proteins EGFP, H2A-EGFP, and TIFI A-
EGFP (n = 2 or 3) are plotted as a function of time. The fitting function is composed of two partial terms and matches the val-
ues sufficiently enough and more precise than a simple exponential function. The term meets the fact that there are both
bound and freely diffusing fluorochrome labelled fractions. The first subterm describes the bleaching of the bound and the sec-
ond one the bleaching of the diffusible component. While the graphs for EGFP and TIF| A-EGFP support free diffusion, the
H2A-EGFP-population exists mostly in a bound state. Both CB(SC) constructs show an intermediate behaviour which points to
bound as well as mobile fractions. C. FRAP curves of the same set of fusion proteins corroborate the findings above.
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depletion to a third of its original value. In contrast, the
H2A-EGFP curve shows an extremely steep initial decrease
- within the first ~10s the equilibrium is reached. This
finding suggests that most of the GFP-tagged histone is
immobile; a supplementary pool of mobile H2A-EGFP
does exist, though. The plots for both CB(SC) constructs
(CB(SC)-EGFP and ECFP-CB(SC)-EYFP) show a strong
initial loss and lie between the two control constructs
EGFP and H2A-EGFP. Hence, we conclude that a signifi-
cant fraction is not diffusing freely, but is in an associated
state.

FRAP

The recovery of fluorescence after complete photobleach-
ing within a ROI of the sample was analysed in analogy to
the continuous bleaching experiment (Fig 5C). Back diffu-
sion of fluorochrome into the bleached region was moni-
tored continuously. Minor differences in the starting
points are inherent to the procedure. The recovery of both
EGFP and TIF1A-EGFP intensity was complete within mil-
liseconds. Whereas only mobile EGFP was observed, there
was a very small fraction (~3%) of immobile TIF1A-EGFP
as indicated by its lower plateau. In contrast, the fluores-
cence of the tightly bound histone-EGFP chimera did
hardly recover and revealed an immobile fraction com-
prising at least 60% of the material. Again, both CB(SC)
variants showed an intermediate behaviour in respect to
the controls which confirmed the notion of their binding
to nuclear components. The immobile fractions were low
and diffusion occurred retarded in both cases. In spite of
the higher molecular mass, the double-tagged CB(SC) dif-
fused faster than the single tagged variant. This can be
explained by conformational changes in the CB protein
caused by the additional N-terminal fluorescent protein,
which might affect affinity characteristics. Furthermore,
one has to consider the different bleaching characteristics
of EGFP (~8% of original intensity) and ECFP/EYFP
(~30% of original intensity), which could distort the
results.

Mutational analysis

The accumulation of CB(SC) in the nucleus was fatal to
the cells as will be shown later. It is therefore interesting
to find out which parts of the protein are involved in the
nuclear localization. We tackled this subject by a genetic
mutational analysis of the single chain CB, CB(SC) (Fig
6). For comparative localization studies, the mutated con-
structs were tagged by distinct GFP variants, which differ
in spectral characteristics (EGFP, EYFP, ECFP, and EBFP).
The number and the site of tagging were also varied. The
findings are compiled in Fig 6; Figs 3 and 7 illustrate the
intracellular localization of the most relevant examples.

A construct encoding the natural ASICB (#0) localized to
mitochondria and nuclei. Two constructs originate from

http://www.biomedcentral.com/1471-2121/6/16

the sequence inherent restriction sites: A Kpnl deletion led
to (i) a seven residues longer construct in respect to the
CB(SC) (#3, 4) and contained parts of the N-terminal
propeptide (A72CB, #1, 2). (ii) The BgllI-generated mutant
CB([C211_1243del]SC) (#8) lacked 33 residues, which
contain a possible disulfide bridge. In the intact polypep-
tide, this sequence connects the two globular units of the
heavy chain. Both mutants localized in cells exactly as
CB(SC). The deletion of the 6 residues long C-terminal
propeptide in A72CB (compare #1 and #2) did not exhibit
any influence onto the signal distribution. This corre-
sponds to other observations [36]. As constructs contain-
ing or lacking the C-terminal propeptide localized
identically, we conclude that the chimeras were not proc-
essed at this site and that these results are reliable.

In the absence of a canonical NLS, one might suppose that
conformation plays the essential part for the localization
of artificially truncated CB. Our efforts were therefore con-
centrated on globular protein domains the destruction or
deletion of which should less affect the folding of the
remaining polypeptide. Two GFP-tagged constructs,
which correspond to the heavy and the light chain of CB,
were produced. While both CB(LC) constructs (#9, 10)
revealed a diffuse distribution in LCLC-103H cells compa-
rable to that of pure EGFP, the single-tagged CB(HC) con-
struct (#11) was distributed identically to CB(SC) in the
cytoplasm, the nucleoplasm, the granules, and the mid-
body. This leads to the assumption that the nuclear local-
ization patch really exists and that it is confined within the
heavy chain. Double-tagged constructs led to a less differ-
entiated signal distribution in some cases (e.g. #12, 16).

To further narrow down the region of interest, the heavy
chain sequence was subdivided into two parts of compa-
rable size CB(HCy;) (V129_N228; #13, 14) and CB(HC,)
(N228_D333; #15, 16), which encode globular units in
the native protein (Fig 8). CB(HCy.) was found in the
cytoplasm and in low amounts in the nucleus. In contrast,
CB(HC) was highly enriched in the nucleoplasm includ-
ing granules and also in cytoplasmic granules as well as in
the midbodies.

Consequently, the CB(HC) sequence was reduced equi-
distantly towards its C-terminus and the following
constructs were obtained: CB(HC;) (E242_D333; #17),
CB(HC,) (V255_D333; #18), CB(HC;) (Q268_D333;
#19), CB(HC.,) (R281_D333; #20). With lower frag-
ment size, the constructs were located more and more
homogeneously within the cytoplasm and the nucleus,
the typical granules no longer appeared and fewer signals
were enriched in the midbody. Finally, the only 52
residues long CB(HC,) fragment appeared almost as dif-
fuse as EGFP.
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Figure 6

Mutational analysis. Besides the recombinant GFP-chimeras of the entire CB zymogene (top panel) and the splicing variant
A5'CB (#0), the mutated artificial CB-constructs used in this study (below) and their intracellular localization in LCLC-103H
cells (right) are compiled. The active site amino acids in the FLM sequence are indicated by red asterisks. Deleted regions are
represented by lines connecting the expressed regions (bars). The N-terminal fluorescent protein tags are displayed in a
spliced way. HC: heavy chain; LC: light chain; A: deletion; *: site of amino acid exchange; Np: nucleoplasm; Mi: mitochondria;
Mb: midbody; CG: cytoplasmic granules; NG: nuclear granules.
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Figure 7

Localization of mutated CB-FP chimaeras in transiently expressing LCLC-103H cells. Individual expression with
corresponding constructs (above: EYFP-tagged; below: ECFP-tagged) and false colour superposition of both fluorescence chan-
nels (YFP: red; CFP: green) are shown. Double-transfection of A72CB (A) or CB([C211_1243del]SC) (B) with CB(SC), respec-
tively, resulted in a complete colocalization of both constructs. The heavy chain domain still colocalized with the single form to
a large extent (C). Compared with the heavy chain, the light chain of CB was distributed homogeneously throughout the cell as
pure GFP (D). In contrast to the CB(HCy;) constructs, CB(HC) expressed hotspots around the Golgi and inside the nucleus
and stained the midbody (E). Transient coexpression of CB(SC) and its increasingly truncated C-terminal fragments (F-J)
revealed decreased nuclear fluorescence with smaller fragment size. Already in case of CB(HC) (F), the tendency to accumu-
late was reduced considerably and the accumulations disappeared completely in case of CB(HC,) transfection (l). The latter
showed an almost complete homogeneous signal distribution without any accumulation in the nucleus, the granules, or the
midbody, respectively. The elimination of 9 residues in the C-terminal part of CB (Q268_G277del) had no significant influence
on the localization; the construct still colocalized completely with CB(SC) (J; the inset is a superposition of the midbody fluo-
rescence with the corresponding phase contrast image). A-C, G-I. OPM; A, (ECFP): 430 nm; Ag, (EYFP): 500 nm; obj. 60%/1.2
Plan Apo water. D-F, J. WFM, in part after deconvolution (D, J); obj. 63%/1.25 Qil (D, F, J); obj. 40%/0.60 (E); bars 10 zm.
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N

heavy chain

Figure 8

Spatial representation of the mutated sections. The
positions of key fragments are indicated within the native
mature CB protein. These are the globular domains of the
light chain, the heavy chain, and two subunits CB(HCy) and
CB(HC(). The figure serves for illustrational purposes only
and does not represent the authentic conformation of the
fragments.

The exposed and highly mobile residue E273, which is
located within the restricted region, raised the question
whether it is possibly involved in the nuclear localization
of CB. We proved this suspicion by specific point
mutations: In CB([E273L]SC) (#21), the acidic and polar
glutamic acid is exchanged against the neutral and non-
polar leucine; in CB([E273del]SC) (#22), the glutamic
acid is eliminated. Finally, in CB([Q268_G277del]SC)
(#23), the surrounding residues forming a loop are
deleted completely. Surprisingly, neither the point muta-
tion nor the point deletion nor the excision of the five res-
idues to each side of E273 produced a significant change in
the localization. In contrast, the elimination of the adja-
cent C-terminal region in CB([L80_L283]|SC) (#24)
resulted in a considerable decrease of nuclear signal.

These mutational studies suggest that a region within the
C-terminal sequence N228_D333 has a great impact on
the nuclear localization of CB(SC). The results favour the
assumption that an epitope is generated by a spatial
arrangement of the respective, yet not defined residues.

Mechanisms of nuclear import
Besides an active import of the CB(SC) polypeptide into
the nucleus, a passive transport by diffusion processes

http://www.biomedcentral.com/1471-2121/6/16

combined with retention of the molecule inside the
nucleus and caused by affinity to nuclear components,
has to be considered. In general, proteins larger than 60
kDa cannot pass the nuclear envelope by mere diffusion.
To exclude the possibility of passive diffusion, we used a
double-tagged construct (FP-CB(SC)-FP; #5) such
increasing the size to 84 kDa, which is well above the
exclusion limit.

In spite of their increased size, the double-tagged con-
structs revealed a nuclear localization comparable to that
of their single-tagged analogues (Fig 4C, D). Because of
the close neighbourhood of both fluorochromes, fluores-
cence resonance energy transfer (FRET) is possible when
appropriate fluorochromes are used. Indeed, using the
combination ECFP-EYFP a FRET effect was observed. As
the donor molecule is never completely extinguished, the
transfer appears to be incomplete, which is not unusual
under the given experimental conditions [43]. FRET
would become unlikely if the heavy and the light chain of
CB(SC) were segregated by processing or general proteol-
ysis. Therefore, the FRET experiment is a further proof that
the single chain form keeps intact and that the entire
fusion protein is transported into the nucleus.

We conclude that the underlying mechanism depends on
an active transport. Further, these results clearly point out
a directed nuclear transport and retention mechanism
linked to the structure of the CB(SC) polypeptide. In
advanced expression states, punctuate signals were
observed, which were carried from the tips of the
pseudopodia towards the Golgi area in a directed way and
which penetrated the nuclear membrane without a notice-
able delay [see Additional file 1].

Induction of cell death

LCLC-103H cells permanently expressing CB(FLM) chi-
meras were easy to clone. In contrast, cells transfected
with CB(SC)-FP proved to be short-lived and all attempts
to establish cell clones with a typical CB(SC)-FP expres-
sion failed. We therefore assume that this construct has
the ability to provoke cell death. We proved whether it
localizes in a time-dependent manner and monitored the
process of cell death in time-lapse experiments (Fig 9A).
Cell death followed a strict scheme which can be
described in morphological terms over time starting as
early as 12 h post transfection and finishing about 6 h
later: (i) nuclear accumulation throughout rising expres-
sion level, (ii) formation of cytoplasmic and nuclear
granules (around the Golgi and within the nucleus
mostly), (iii) directed transport of granules to the Golgi
and the nucleus, (iv) disintegration of these organelles
followed by (v) rounding up and detachment of the cells
from the support, (vi) stationary motility of the cell and
cellular collapse [see Additional file 2]. Interestingly, cells
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CB induced cell death. A. LCLC-103H cells were transiently transfected with CB(SC)-EYFP and the temporal expression
course was continuously (At = 2 min) monitored beginning with early signs of fluorescence ~12 h post transfection. The proc-
ess always followed the same scheme: Initially the yet weak fluorescence is distributed equally in the cytoplasm and in the
nucleus. Then, fluorescent granules are formed (partly in the pseudopodia) and transported towards the nucleus passing the
Golgi region. Granulation goes ahead with rapidly increasing fluorescence intensity in the nucleus. Finally, the Golgi apparatus
disappears and the cell collapses within a few minutes while bubbling. Selected images taken by indicated points of a time-lapse
experiment document these events. B. Mortality rates of LCLC-103 H cells transiently expressing CB(SC)-EGFP and control
constructs (EGFP, CB(FLM)-EGFP) were determined by propidium iodide staining followed by FACS analysis. To meet falsifica-
tions of results that are caused by variable transfection rates (22—63%) the absolute mortality values were normalized to the
respective transfection efficiency. Dead cells in consequence of the toxicity of the transfection agent and false positives attrib-
utable to autofluorescence were taken into account by subtraction of the respective control values: The number of dead cells
(propidium iodide channel) amounted to ~13% in case of mock-transfected control cells; 2% of total were false positive "trans-

fectants" (GFP channel). In comparison to CB(FLM)-EGFP, the toxicity of the CB(SC)-construct was almost twice as high

(~78%).

which were transfected with FP-CB(HC)-FP also died
~3-4 h after apparent expression. This took place in a dif-
ferent manner exhibiting membrane blebbing and cell
swelling followed by bursting of the cell.

We quantified cell death by propidium iodide staining
and fax analysis 16 h post transfection and determined
mortality rates for populations transfected with EGFP,
CB(FLM)-EGFP, and CB(SC)-EGFP (Fig 9B). The mortal-
ity rate of mock-transfected cell populations was below
20%. Cells expressing the EGFP control only revealed
mortality rates of ~18%. On the contrary, ~43% of the
CB(FLM)-EGFP expressing cells and ~78% of the cells
transfected with CB(SC)-EGFP died at that time. The latter
population did not recover in the further time course and
only a few cells with a very low expression level or aber-
rant localization survived.

Indications for apoptosis were proved. In some cases,
nuclear fragmentation and membrane blebbing were
observed. A well-defined evidence of apoptosis in respect
to disintegration of the plasma membrane (Annexin V/
propidium iodide assay) or DNA fragmentation (DNA
ladder) could not be produced. Nevertheless, one should
not exclude apoptosis in favour of necrosis from further
considerations.

Discussion

Over the last years, the perception about the functions of
CB has changed considerably. Recently found evidences
assign to this 'lysosomal peptidase' key positions in
cardinal processes also outside the lysosomes, like in
apoptosis or cancer. Technical advances in microscopy
and the development of stable chemical and genetic
markers for organelles and molecules now facilitate pow-
erful and direct in vivo approaches. They permit not only
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the localization of certain proteins but also the investiga-
tion of their intracellular transport, their interaction with
other proteins, and their enzymatic activities, as well as
the study of the cellular response in respect to overexpres-
sion or silencing of specific proteins.

In vivo, both normal tissues and especially tumours con-
tain a population of truncated CB, which can be traced to
alternative splicing (Fig 1A). Since expression and trans-
port of CB are frequently altered in transformed and
malignant cells as well as in cells undergoing apoptotic
processes, we gave our attention to the investigation of
such CB aberrations. For this purpose, we have labelled
several recombinant CB forms by fluorescent proteins and
subjected them to living cell imaging by advanced digital
microscopy techniques.

Truncated cathepsin B forms

The naturally truncated A>!CB lacks the complete signal
sequence as well as parts of the N-terminal proregion. This
product is barred from entering the ER, and thus from fur-
ther processing and transport by the mannose-6- pathway.
However, the residual propeptide contains a MTS which
becomes efficient and directs the predominant amount of
the respective product to mitochondria [25]. Our own
observations confirm this finding. AS!CB is expressed
both in vitro and in vivo as entire 35 kDa product [24]. This
corresponds to our findings of further truncated artificial
CB sequences irrespective of their size or tagging with
markers: all constructs remained intact and they were not
cleaved posttranslationally. Earlier assumptions [24]
about the possible CB-specific enzymatic activity of AS1CB
were recently questioned [25,26].

Obviously, the propeptide is indispensable for proper in
vivo-folding of the mature enzyme with the typical CB
activity. Interestingly, a splicing variant of cathepsin L
devoid of the signal peptide also appears associated with
the nucleus and exhibits a specific cleavage activity [28].
Therefore, one should take into consideration that the
truncated form(s) of CB might have cleaving characteris-
tics, which do not become evident in the standard assays.
In this report, we prove that neither the completeness of
the sequence nor the CB specific enzymatic activity is rel-
evant to the observed nuclear accumulation and induc-
tion of cell death.

Nuclear localization

Unlike CB(FLM), which is targeted to the lysosomes via
ER and Golgi and partly secreted into the extracellular
medium, the cytosol-expressed A51CB is mainly addressed
to the mitochondria [25]. Our own experiments with the
same construct confirm these findings. However, deduced
from our measurements, a non-negligible fraction of the
expression product can also be found in the nucleoplasm.

http://www.biomedcentral.com/1471-2121/6/16

Inspection of the published data [25] does not contradict
our findings. Nuclear fluorescence cannot arise from
unspecific decay or cleavage products inasmuch as dou-
ble-tagged constructs reveal similar results as the single-
tagged ones indicating the integrity of the constructs. Fur-
ther, we propose a targeting signal downstream of the
MTS which alternatively may direct CB and derivatives
thereof into the nucleus. Obviously, a hierarchy of signals
encoded within the CB polypeptide determines its intrac-
ellular distribution pattern. The signal peptide and the
glycosylation sites are decisive for lysosomal targeting of
the FLM-product. The signal peptide and the propeptide
containing the MTS are removed during the maturation
process. Thus, the nuclear targeting signal might become
active after release of the enzyme from lysosomes into the
cytosol. In case of the truncated A>!CB, the MTS is pre-
dominant, whereas for the artificially truncated CB forms
the nuclear targeting signal is characteristic. In the past,
CB was also found in cell nuclei of tumour cells and nor-
mal tissues [31,44,45], but until now there are almost no
indications to a potential transport mechanism or a spe-
cific function. Especially in apoptotic processes, CB and
other CB-like peptidases were detected also in the cell
nucleus [8,32]. However, these studies still miss a thor-
ough scrutiny for the nuclear localization.

Here, artificially truncated CB-GFP chimaeras were used,
from which the A72CB-construct came closest to the splic-
ing variant A>1CB in respect to its size. However, it was
devoid of the functional sequence present in AS!CB that
encodes the N-terminal MTS. Not only A72CB but also the
slightly shorter CB(SC) and other considerably shorter CB
fragments were first expressed cytoplasmically as
expected. In the sequel, they were enriched within granu-
lar structures, which were not consistent with lysosomes
or mitochondria as might be supposed. Furthermore,
these polypeptides were clearly proved in the nucleo-
plasm of several cell types. Frequently, nucleoli showed
discrete regions of labelling. In contrast to the nucleus,
which can be entered by both active and passive transport,
the nucleoli are addressed exclusively by interaction with
nucleolar building blocks [46]. Immunocytochemistry of
CB(SC), which was tagged by a myc-epitope, confirms the
results of the GFP-tagging. Though, a slightly higher retic-
ular signal distribution was observed. In addition, this
proves that in spite of its size, the fluorescent protein does
not sufficiently affect the affinity of CB polypeptides to
the respective localization sites.

Based on these results, the capacity of cathepsins particu-
larly in the context of nuclear localization has to be recon-
sidered [47].
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Mutational analysis

There are no clues to an already known NLS in CB accord-
ing to literature and to our own computational analysis.
The findings suggest that the complex differential distri-
bution of artificially truncated CB might depend on dis-
tinct targeting signals. To identify the region(s) of a
potential nuclear localization signal sequence or a signal
patch, respectively, a number of mutated GFP-tagged con-
structs were produced. Despite the elimination of exten-
sive sequence regions, partly including potential
stabilizing elements such as disulfide bridges - e.g. in
CB([C211_1243del]SC) -, the specific localization per-
sisted to a high degree. The participation of the CB light
chain in this sorting procedure was excluded. The heavy
chain determines the nuclear localization only; the region
with the highest impact on the specific localization could
be narrowed down to its C-terminal subunit. Although
constructs smaller than CB(C'1) did not reveal unequivo-
cal results, the smallest of them, CB(C'4), was not targeted
specifically. The assumption that the nuclear affinity
essentially depends on the prominent acidic and polar
surface residue E273, which is found within the relevant
region, could not be proved by several specific mutations.
Excision of the differential part of CB(C'3) and CB(C'4)
did also not affect the localization. The deletion did not
imply adjacent residues around the active site H278 in
CB(C'4), which also might be important. Hence, the
results do not support the existence of a linear signal
sequence. Rather a composed signal patch is likely, which
evolves from the three-dimensional conformation of the
polypeptide. In contrast to linear signals, such signal
patches are difficult to identify exactly.

The appearance of CB(SC) and other artificially truncated
constructs in the midbody is striking (Fig 4C-G). Accord-
ing to a recent study [48], midbodies have a complex com-
position. However, only a few peptidases and no cysteine
peptidases at all were found therein. Nevertheless, the
association of CB constructs with the midbody supports
their nuclear occurrence.

Transport mechanisms and interaction with the nuclear
matrix

The exclusion limit for free diffusing molecules through
the nuclear pores is at ~60 kDa. By applying constructs
well above the exclusion limit (~84 kDa) we ruled out
passive transport across the nuclear pore complex with
high probability. The integrity of the products was proved
by immunoblotting and by FRET analysis. In the time-
lapse experiments, we noticed a directional transport of
granules from across the cells to the Golgi and into the
nucleus without any delay at the nuclear envelope. These
observations ask for a specific transport system to which
the expression product might be hooked into.

http://www.biomedcentral.com/1471-2121/6/16

Are the imported artificial CB variants possibly retained
inside the nucleus because of a specific affinity to nuclear
components? To answer this question, a comparative
TPM-photobleaching approach was applied. The mobility
of CB(SC)-EGFP and ECFP-CB(SC)-EYFP was analysed in
living cells by continuous photobleaching and FRAP. We
chose the freely diffusing EGFP [41] and the tightly chro-
matin-bound H2A-EGFP [42] as limiting controls and
TIF1A-EGFP as further control with partial mobile and
immobile fractions. In both technical variants of the
approach, the EGFP measurements obeyed curve shapes
characteristic of free diffusion (almost exclusively mobile
fraction); in contrast, those of H2A-EGFP were typical for
predominantly immobile molecules. Hence, both con-
trols reacted as to be expected and in analogy to former
studies [49,50]. The courses of the CB(SC) graphs reflect
an intermediate status indicating low immobile and high
mobile fractions evolving from limited diffusion inside
the nucleus. From this we assume that the artificially trun-
cated CB is able to associate with nuclear matrix compo-
nents. This nuclear affinity might be transferred to the
naturally truncated A51CB form. Chromatin as a conceiv-
able partner of interaction could be excluded from consid-
erations by an OPM double labelling experiment of cells
using GFP-tagged histone H2A and CB(SC) inasmuch as
no colocalization could be observed. The relatively high
amount of mobile CB(SC) might depend on scarcity of
interaction partners: we have to consider that the CB
products are overexpressed, other than their possible
counterparts.

Cell viability

It was reported that the naturally truncated A51CB was
directed to the mitochondria and that the cells died after
fragmentation of the nucleus [25]; our observations con-
firm these findings. We suppose that nuclear targeting of
A>51CB might be overwhelmed by the present MTS.

Removal of this sequence in the artificially truncated
A72CB and in further modified constructs results in their
nuclear targeting and accumulation. Both overexpressed
natural and artificial constructs lead to the same conse-
quence, namely nuclear fragmentation and cell death.
Neither we nor others [25] could prove that the induced
cell death arises from apoptosis.

It was described that cell death can be preceded by a
release of mature and active CB from the lysosomes and
by the appearance of CB in the nucleus [7]. Our studies of
the artificially truncated constructs support these observa-
tions. Any truncated forms of CB proved to have no regu-
lar CB enzymatic activity. A proper refolding of A51CB to
an enzymatically active form was demonstrated under in
vitro conditions [24]. However, one has also to take into
consideration a different cleavage activity or functionality
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for the truncated variant(s) of CB. Such was recently
found in case of truncated cathepsin L [28] and probably
also cathepsin H [27].

The significance of results, which are obtained by overex-
pression, is often a contentious issue. Two arguments sup-
port the validity of our results: (i) Generally, expression
levels of transfected cell populations diverge largely
among individual cells. In case of CB(SC), the response to
expression is severe and comprises also cells with obvi-
ously negligible expression. (ii) Time lapse video
sequences demonstrate a granulation and a directed trans-
port of CB(SC) to the nuclear region followed by fusion
with the nucleus (see supplemental material).

Conclusion

Naturally appearing variations of CB and other related
enzymes exhibit changed physiological characteristics and
function as metabolic regulators in different states of
diseases. We examined the nature of truncated CB by
mutational analysis of extrinsic CB forms combined with
advanced fluorescence microscopy. According to our
results, artificially truncated CB forms lacking the MTS
accumulated within the cell nucleus by an active transport
mechanism and revealed binding affinity to nuclear
matrix compounds. The region responsible for nuclear
targeting resides in the C-terminal part of the protein. A
hierarchy of signals is discussed. Expression of artificially
truncated CB affected the cell viability to a large extent.
Emerging from this, one has to raise the question whether
the traditional understanding of distinct CB populations
in terms of "normal" and "aberrant" might be misleading
and thus has got to be reconsidered.

Methods

Cell lines

Investigations were performed on LCLC-103H cells
derived from a human large cell lung carcinoma (ATCC#
CCL5, DSMZ# 384). In addition to the original classifica-
tion of these cells, it was now found that they are point-
mutated in the p53 gene leading to an inactive p53. In
control experiments, additional cell lines were used: HeLa
(ATCC# CCL2), HEK-293 (DSMZ# 305), Wi-38 (ATCC#
CCL75), primary human microvascular endothelial cells
(HDMEC), Hep-G2 (DSMZ# 180), COS-7 (ATCC#
CRL1651), and MDCK (ATCC# CCL34). The cell lines
were cultured according to the recommendations of the
suppliers.

Transfection procedure

For microscopical studies, the cells were seeded on 4.2
cm-diameter coverslips or on Lab-Tek® Chambered Cover
Glasses (Nunc, Wiesbaden, Germany) at a density of
10*cm2 and transfected 12-15 h later at ~70% confluence
with ~150 ng of the appropriate plasmid DNA by
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FuGENEG™ (Roche Molecular Biochemicals) according to
the supplier's instructions. In double transfection experi-
ments, equal masses of DNA were applied.

Fluorescence microscopy

Prior to observation, the coverslips with the transfected
cells were mounted in perfusion chamber holders
(PeCon, Erbach, Germany). The samples were observed
24-72 h post transfection at 34-36°C and 5% CO,.

Digital wide field microscopy (WFM)

Images were obtained by an Axiovert S100TV (Zeiss, Jena,
Germany). It was equipped with long distance condenser
and objectives (Neofluar® 10x/0.30 Ph, LD Apochromat®
20x/0.40 Ph, LD Apochromat® 40%/0.60 Ph, Fluar® 40x/
1.30 Oil, Plan-Neofluar®63x/1.25 Oil Ph, C-Apochromat®
40%/1.20 W, Plan-Apochromat®63x/1.4 Oil), a CCD cam-
era (Orca C4742-95, Hamamatsu Photonics, Hama-
matsu, Japan), shutters, macro (Ludl Electronic Products
Ltd., Hawthorne, NY, USA) and piezo (Pifoc720, PI, Karl-
sruhe, Germany) focus drives, and an incubator to guar-
antee proper growth conditions in long-term experiments.
The automated filter wheels (Ludl) contained filters for
ECFP (Ex 436/10, DiM 455, Em 480/40), EGFP (Ex 488/
20, DiM 505, Em 535/40), EYFP (Ex 515/10, DiM 530,
Em 560/40) (Chroma, Brattleboro, VT, USA), and Cresyl
Violet (Ex 560/40; DiM 590; Em 600 LP) (Omega Optical
Inc., Brattleboro, VT, USA) fluorescence detection. Image
acquisition was controlled by the OpenLab software
(Improvision, Coventry, UK). Optical slices were partly
subjected to built-in deconvolution algorithms and
processed to 3D-restoration by the Amira™ software (TGS
Europe, Diisseldorf, Germany).

TPM

Single scans and serial images for time-lapses were
acquired by an Eclipse TE300 microscope (Nikon, Diissel-
dorf, Germany) using a Plan-Apochromat® 60x/1.2 W
objective (Nikon). A pulsed (13.2 ns) mode-locked
Mira900-F Ti:sapphire laser (Coherent, Santa Clara, CA,
USA) was pumped by a Verdi™ argon laser (Coherent).
TPM was performed at 860 nm; fluorescence was detected
consecutively at 470/30 nm (ECFP), at 535/30 nm
(EYEP), or at 510/20 nm (EGEFP), respectively. Microscop-
ical set-up and image processing were described in detail
previously [51].

Bleaching experiments

Nucleoplasmic diffusion of the fluorescent protein chime-
ras was analysed by photobleaching of living cells as
described in [49] and shown exemplarily for the H2A-
EGFP construct (Fig 5A). Besides minor modifications to
the original work, which had to be introduced for techni-
cal reasons and which are described below in detail, TPM
was used instead of OPM.
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Fluorescence recovery after photobleaching (FRAP)

A nuclear region of 21.8 x 21.8 pm?2 was scanned to
describe the situation before bleaching (total scanning
time: 2.033s; period duration: 5 us). The fluorescence was
monitored at the respective emission wavelengths (see
above) with 5 mW incident laser power. No cell damage
was observed with the chosen illumination parameters.
Within this area, a smaller region of interest (ROI) of 2 x
2 um?2 was bleached completely by 10 continuous scans
(total bleaching time: 20.33 s). The selection was reset
manually to the region at the beginning and a series of 50
consecutive single scans was recorded; the delay between
bleaching and start of recording was ~2 s. About 8% of the
initial EGFP fluorescence and up to 30% of the ECFP or
EYFP intensity were depleted by the additional post-
bleaching irradiation. Mean grey values of the images
were evaluated by the Scion Image software (Scion Corpo-
ration; Las Vegas, NV, USA). The relative fluorescence
intensity values, I, were normalized according equation

(1)

I Ty
Iy T;

(1) Lig =

where T, is the total intensity before bleaching, T, the total
intensity at various time points t, I, the intensity of the
prebleached RO, and I, the intensity of the ROI at the cor-
responding time points. The share of the mobile fraction,
F,,, was calculated by equation (2)

L.-1,
Ii =1

(2) By =

where I is the fluorescence in the ROI reaching a plateau
after complete recovery, I; the intensity during prebleach
and I, the intrinsic background fluorescence, which was
negligibly low in our case. The effective diffusion coeffi-
cient, D, is conversely proportional to the characteristic
diffusion time, 7, which can be determined from the
time value at I /2. For a more complex view of the calcu-
lations refer to [52,53].

Continuous photobleaching

The same basic parameters and evaluation tools as
described for FRAP were used. A series of 30 consecutive
images was grabbed within a square ROI of 2 um border
width. Overview scans before and after the series were
taken for comparison. The grey values of the ROI were
normalized to their respective initial value and fitted by a
regression function which was composed of two partial
exponential terms by the SigmaPlot software (Systat Soft-
ware, Inc., Point Richmond, CA, USA).

http://www.biomedcentral.com/1471-2121/6/16

Determination of the mortality rates

Mortality of transiently transfected LCLC-103H cell popu-
lations was quantified after a propidium iodide (Sigma-
Aldrich, Taufkirchen, Germany) staining by a FACSCali-
bur™ flow cytometer (Becton-Dickinson, Heidelberg, Ger-
many). The cell concentration was 2-8 x 10> cellsml-!in a
measure volume of 50 l. Efficiency of transfection was
determined by EGFP fluorescence in the FITC channel;
dead cells stained by propidium iodide were monitored in
the propidium iodide channel (excitation at 488nm
each). The data were evaluated by the EPICS® profile ana-
lyser software (Coulter Corp., Hialeah, FL, USA).

Apoptosis tests

LCLC-103H cells transiently expressing CB(SC)-EGFP
were checked for plasma membrane integrity and DNA
fragmentation as indicators for apoptosis.

Plasma membrane perforation: At the cellular level, early
stage apoptosis was examined by the AnnexinV-assay as
described by the supplier (Roche Molecular Biochemicals,
Mannheim, Germany). Cells were stained by AnnexinV
and propidium iodide and subjected to fluorescence
microscopy and FACS analysis.

DNA fragmentation: Genomic DNA was isolated and
cleared of RNA using the DNA ladder kit (Roche Diagnos-
tics, Mannheim, Germany) according to the instructions.
Apoptosis was triggered by 5 um etoposide (Sigma-
Aldrich) or MG115 (Sigma-Aldrich) in control cells. The
samples  were  then subjected  to agarose
gelelectrophoresis.

Cytochemistry
Besides GFP, synthetic living cell markers and immunola-
bels were used.

Living cell staining

Nuclear DNA was stained with 2 ugml! Hoechst33342
(Sigma-Aldrich), lysosomes were marked with 50 nM Lys-
oTracker Red (Molecular Probes, Leiden, The
Netherlands).

Immunolabelling

Methanol fixed cells immobilized onto poly-lysine coated
cover slips were treated with antibodies (Abs) against CB
(primary Ab: a-hCB-shlgG, BioAss, Herrsching, Germany;
secondary Ab:  a-sh-dIgG(HC+LC)-Cy3, Dianova,
Hamburg, Germany), GFP (primary Ab: o-GFP-rIgG,
Clontech, Heidelberg, Germany; secondary Ab: a-r-
glgG(HC+LC)-Cy3, Dianova), and the myc-epitope (pri-
mary Ab: a-myc-mlgG; secondary Ab: o-m-dIgG-Texas
Red). Finally, the cover slips were mounted onto slides
with Mowiol (Calbiochem, Schwalbach, Germany).
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Determination of the enzymatic activity

CB-specific activity was determined invivo by digital wide-
field microscopy (WFM). The fluorogenic substrate (Z-
Arg-Arg),-cresyl violet was added into the culture medium
at 25 um and the following enzymatic reaction was mon-
itored by the release of the fluorescent dye cresyl violet in
1 min intervals over a period of 10 min. For quantitative
purposes, we used invitro activity assays, which were per-
formed as described [54].

SDS-PAGE and Western Blot analysis — Proteins were sepa-
rated on 12% polyacrylamide SDS gels followed by an
electro transfer to a nitrocellulose membrane and detected
by appropriate Abs using alkaline phosphatase by stand-
ard procedures.

Cloning and mutational analysis

The sequence encoding the single chain form of human
CB, CB(SC), was amplified from a known cDNA (IMAGE
clone ID 380482; Deutsches Ressourcenzentrum fiir
Genomforschung, Berlin, Germany) by PCR. It was sub-
cloned into pcDNA3 (Invitrogen; NV Leek, NL) and
tagged by appropriate fluorescent proteins (Clontech)
analogously to the CB(FLM) sequence as described previ-
ously [55]. The CB(SC) sequence served as template for
further mutation variants. Additional ATG start codons
ensured proper translation. The artificially truncated
sequence A72CB appeared as a by-product in the cloning
process of CB(FLM) caused by an internal Kpnl restriction
site. Specific mutations (insertion, deletion, conversion)
were introduced into the CB sequence by site-specific
mutagenesis using standard PCR procedures. All con-
structs were verified by DNA sequencing.

Synthesized forward (fd) and reverse (rv) primers (Phar-
macia; DKFZ) were used for PCR amplification of modi-
fied CB constructs. They contained restriction sites for
cloning into pcDNA3 (underlined in the following primer
sequences):  SC-fd-Kpnl: ~ GGGGTACCATGCTGCCT-
GCAAGCITCGATG, myc-SC-fd-Kpnl:
GGGGTACCATGGAGCAGAAGCTGATCTCCGAGGAG-
GACCTGCTGCCTGCAAGCTTCGATGCACGG, SC-X-rv-
Notl: GGCGGCCGCITAATCGGTGCGTGGAATTCCAGC,
[AC'pro]SC-rv-Sall: GGGTCGACGATCTITTCCCAG-
TACTGATCG, LC-rv-Sall: GGGTCGACATTGGTGTGGAT-
GCAGATGCGG, HC-fd-Kpnl:
GGGGTACCATGGTCAGCGTGGAGCTGTCGG, HCy-1v-
Sall: GGGTCGACATTGTATCCGTAGTGCITGTCC, HC-
fd-Kpnl: ~ GGGGTACCATGAATTCCTACAGCGTCTCCA,
HC-fd-Kpnl: GGGGTACCATGGAGATCTACAAAAACG-
GCC, HCq,fd-Kpnl: GGGGTACCATGGTGTATTCG-
GACTTCCTGC, HC;-fd-Kpnl:
GGGGTACCATGCAACACGTCACCGGAGAGA, HC,-fd-
Kpnl: GGGGTACCATGCGCATCCTGGGCTGGGGAG,
[E273L]SC-fd:

http://www.biomedcentral.com/1471-2121/6/16

CCAACACGTCACCGGACTGATGATGGGTGGCCATG,
[E273L]|SC-1v: CATGGCCACCCATCATCAGTCCGGT-
GACGTGTTGG, [E273del]SC-fd: ACCAACACGTCACCG-
GAATGATGGGTGGCCATGCC, [E273del]SC-1v:
GGCATGGCCACCCATCATTCCGGTGACGTGITGGT,
[Q268_G277del]SC-fd: TACAAGTCAGGAGTGTACCAT-
GCCATCCGCATCCTG, [Q268_G277del]|SC-1v:
CAGGATGCGGATGGCATGGTACACTCCTGACTTGTA,
[L80_L283]SC-rv-Sall: GGGTCGACCAGGATGCGGAT-
GGCATGGCCA.

The spatial orientation of the mutated regions was visual-
ized by the molecular modelling software PyMOL™
(v0.97, © DeLano Scientific LLC, San Carlo, California,
USA). The reconstruction was based on crystallographic
data of a mature CB protein (PDB-1d: 1huc).
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Additional material

Additional File 1

Transient expression of CB(SC)-EYFP in LCLC-103H cells (phase
contrast, fluorescence channel, and inverse grey value representation
of the fluorescence signal). The sequence describes the formation of gran-
ules, their fusion, and the transport to the nucleus accompanied by
breakup of the Golgi. WFM, LD Apochromat®40x/0.60 Ph. At = 5 min,
total time = 195 min. Video format: MPEG1. The abbreviation "MM"
(mature message) is used equivalently to the term "SC" (single chain).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-6-16-S1.mpg]

Additional File 2

Transient expression of ECFP-CB(SC)-EYFP in LCLC-103H cells (flu-
orescence channels, phase contrast, and superimposition of the last
fluorescence frames). The double-tagged construct is expressed in the
cytoplasm and accumulated within the nucleus. No significant differences
among the two fluorescence channels can be observed suggesting that the
polypeptide remains intact and is imported into the cell nucleus as a
whole. Only the expressing cells undergo cell death and reveal membrane
blebbing, which is typical for apoptotic processes. WFM; obj. Neofluar®
10x/0.30 Ph. At = 3 min, total time = 250 min. Video format: MPEGI.
The abbreviation "MM" (mature message) is used equivalently to the
term "SC" (single chain).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-6-16-52.mpg]
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