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Abstract

Β-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the
lignocellulose saccharification, converting cellobiose in glucose. However, most of the β-glucosidases are inhibited
by high glucose concentrations, which turns it a limiting step for industrial production. Thus, β-glucosidases have
been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal
resistance for constructing more efficient enzymes. In this paper, we present a database of β-glucosidase structures,
called Glutantβase. Our database includes 3842 GH1 β-glucosidase sequences collected from UniProt. We modeled
the sequences by comparison and predicted important features in the 3D-structure of each enzyme. Glutantβase
provides information about catalytic and conserved amino acids, residues of the coevolution network, protein
secondary structure, and residues located in the channel that guides to the active site. We also analyzed the impact
of beneficial mutations reported in the literature, predicted in analogous positions, for similar enzymes. We
suggested these mutations based on six previously described mutants that showed high catalytic activity, glucose
tolerance, or thermostability (A404V, E96K, H184F, H228T, L441F, and V174C). Then, we used molecular docking to
verify the impact of the suggested mutations in the affinity of protein and ligands (substrate and product). Our
results suggest that only mutations based on the H228T mutant can reduce the affinity for glucose (product) and
increase affinity for cellobiose (substrate), which indicates an increment in the resistance to product inhibition and
agrees with computational and experimental results previously reported in the literature. More resistant β-
glucosidases are essential to saccharification in industrial applications. However, thermostable and glucose-tolerant
β-glucosidases are rare, and their glucose tolerance mechanisms appear to be related to multiple and complex
factors. We gather here, a set of information, and made predictions aiming to provide a tool for supporting the
rational design of more efficient β-glucosidases. We hope that Glutantβase can help improve second-generation
biofuel production. Glutantβase is available at http://bioinfo.dcc.ufmg.br/glutantbase.
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Background
Biofuels are a clean and renewable source of energy, rising
as an alternative to fossil fuels, such as those derived from
petroleum [1, 2]. They are produced from agricultural ma-
terials, for example, sugarcane, corn, soil, seaweed, and so
on [3]. Second-generation biofuel production occurs in
several steps, such as pre-processing, saccharification, and
fermentation. The saccharification step occurs by the syn-
ergistic action of three types of enzymes: endoglucanases
(E.C. 3.2.1.4), exoglucanases, also called cellobiohydrolases
(E.C. 3.2.1.91), and β-glucosidases (E.C. 3.2.1.21) [4, 5].
Endoglucanases act in the cellulose structure, releasing ol-
igosaccharides of different lengths. Cellobiohydrolases hy-
drolyzes the terminal of these oligosaccharides, releasing
mainly cellobiose molecules. Then, β-glucosidases hydro-
lyzes the cellobiose glycosidic bond, releasing two glucose
molecules [4–7]. However, most β-glucosidases are
strongly inhibited by high glucose concentrations [8–10].
Thus, these enzymes have been considered by several
studies as targets to improve high glucose concentrations
tolerance by site-direct mutagenesis or the design of new
enzymes [8–42]. Also, many reviews have reported the
importance of glucose tolerance for improving the sac-
charification process [4, 7, 43].
Recently, Salgado et al. [43] proposed a β-glucosidase

classification system divided into four groups: (i) β-
glucosidases strongly inhibited by glucose (most of
them); (ii) β-glucosidases tolerant to glucose; (iii) β-
glucosidases stimulated by low glucose concentrations
but inhibited in high concentrations; and (iv) β-
glucosidases not inhibited by high glucose concentra-
tions. To the best of our knowledge, the groups ii, iii,
and iv are composed of few enzymes. Therefore, many
studies aimed to transfer their characteristics to other
non-efficient enzymes for biomass hydrolysis. For ex-
ample, Yang et al. [9] evaluated the importance of a set
of amino acid positions through site-direct mutagenesis.
They reported that H228T and N301Q/V302F mutations
could lead a marine non-resistant β-glucosidase to glu-
cose tolerance. Also, Giuseppe et al. [10] reported that
shape and the presence of hydrophobic residues in the
middle of the substrate channel could be related to the
structural basis of glucose tolerance. Furthermore, muta-
tions in the positions 174, 404, and 441 of a β-
glucosidase extracted from the Turpan Depression meta-
genome, have been reported as necessary for increasing
the optimal temperature and reduce the optimal pH
[12]. The study of Cao et al. [12] demonstrated that the
β-glucosidase of the Turpan Depression metagenome
could be classified as glucose-tolerant. However, the wild
enzyme presented a low Kcat/Km value when using cello-
biose as substrate. Also, the half-life of the wild enzyme
at 50 °C was only 1 h. Therefore, this could hinder the
employment of this enzyme in cellulose hydrolysis. The

combination of three beneficial mutations (W174C/
A404V/L441F) was essential to extending the half-life to
48 h, keeping the IC50 and, consequently, the glucose
tolerance. The use of the mutant enzyme allowed an im-
provement of the sugarcane bagasse conversion by 14–
35%, which demonstrated that multiple aspects should
be considered to propose mutations that improve the ac-
tivity of β-glucosidases.
Computational approaches have also been used in the

search for crucial amino acids to convert non-tolerant to
tolerant β-glucosidases. For instance, a set of 15 muta-
tions have been proposed to improve the activity of a
non-tolerant β-glucosidase from a marine metagenome
[44]. From these 15 proposed mutations, a previous
study has provided experimental evidence of enhancing
β-glucosidase activity even in high glucose concentra-
tions for three of them: H228C, H228T, and H228V [9].
The residues mutated V302F, N301Q/V302F, F172I,
V227M, G246S, T299S, and H228T were also the target
of other computational studies that used classic and ac-
celerated molecular dynamics simulation to highlight
their role in glucose releasing [45, 46]. Despite all these
efforts, the rational design of more efficient β-
glucosidases is still a challenge.
Previously, a database containing structures of

glucose-tolerant β-glucosidases, called Betagdb, has been
proposed [4]. Betagdb database was developed based on
papers that reported glucose-tolerant β-glucosidases
with experimental validations and structural data from
public databases (only 23 occurrences were found at that
moment). With the rising and popularization of next-
generation sequencing platforms, thousands of β-
glucosidase from several organisms were stored in se-
quence databases, such as UniProt. These data could be
better explored to bring new insights into β-glucosidase
mechanisms. In this paper, we propose a database of β-
glucosidases enzymes called Glutantβase. Our database
includes 3842 sequences collected from UniProt of β-
glucosidases from the GH1 family (Glycoside Hydrolase
Family 1), the most promising family for second-
generation biofuel production. For all sequences, we per-
formed comparative modeling, predicted their secondary
structure, detected the residues involved in coevolution
networks, detailed the conserved residues, the catalytic
glutamates, and the residues present in the substrate
channel that guides to the active site. Also, we hypothe-
sized that mutations described in the literature as benefi-
cial for improving β-glucosidase activity could be
extrapolated to other β-glucosidases. To verify this, we
modeled 5607 mutant proteins based on analogous posi-
tions of six beneficial mutations described in the litera-
ture: H228T [9], V174C [12], A404V [12], L441F [12],
H184F [27], and E96K [47]. We performed molecular
docking of glucose and cellobiose in the wild and
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mutant proteins to verify the affinity score variation.
Our results show that only mutations in analogous posi-
tions of H228T impact in the interactions of glucose and
cellobiose, which agree with previous computational and
experimental studies [9, 44, 45]. We hope Glutantβase
might help engineering tolerant β-glucosidase enzymes
to bring improvements in second-generation biofuel
production.

Construction and content
Sequence collection
Β-glucosidases sequences were collected from UniProt
(http://www.uniprot.org/). We collected sequences classi-
fied with the E. C. number 3.2.1.21 and from the GH1
family. Then, the sequences were submitted to compara-
tive modeling (see next section) to create their three-
dimensional structures. However, the sequences with less
than 25% identity to a three-dimensional structure tem-
plate were removed. Three thousand eight hundred forty-
two sequences were included in Glutantβase. For each se-
quence, we also collected: (i) protein name; (ii) organism
of origin; (iii) sequence length; and (iv) UniProt ID.

Comparative modeling
We performed comparative modeling for each GH1 β-
glucosidase sequence collected from UniProt. Compara-
tive modeling has been used to obtain three-dimensional
structures from sequences in many β-glucosidases stud-
ies [9, 11, 13, 15, 16, 26, 48]. We used an adapted ver-
sion of Bitar & Franco’s protocol [49] to perform
comparative modeling. Three-dimensional structures for
templates were collected from the Protein Data Bank
(PDB) [50]. To automatize the process, we constructed a
pipeline using in-house Python scripts and Biopython
[51]. Our pipeline was divided into four steps:

(i) Template’s definition: we defined a 3D-structure
template for each sequence. For this, we performed
sequence alignment against sequences obtained
from three-dimensional structures collected from
PDB using the blastp tool [52]. The 3D-structure
with the highest identity was defined as the tem-
plate (only if the identity was higher than 25%);

(ii) Pairwise sequence alignment: target and template
sequences were aligned using the Clustal W v2.1
tool [53]. The sequence alignments (and template’s
3D-structure) were used as input for model’s con-
struction step;

(iii)Models’ construction: we performed comparative
modeling using the MODELLER tool [54]. We
constructed 100 models for each protein using
default parameters;

(iv)Assessment and definition of the best model: we
defined the best 3D-model for each protein using

the DOPE score [55]. We also constructed Rama-
chandran plots for each model selected using the
standard PSI and PHI preferences [56] implemented
in PyRAMA script (https://github.com/gerdos/PyR-
AMA). List of templates used and DOPE scores for
best models are available at additional files (Tables
S1-S2).

Multiple sequence alignment
We performed multiple sequence alignment of GH1 β-
glucosidases using the Clustal Omega tool (default pa-
rameters) [57]. We used Clustal Omega since it can deal
with a vast number of sequences [58]. We collected the
most representative amino acid for each position of the
multiple sequence alignment. Then, we constructed a
corresponding position table, the so-called “global pos-
ition table”, for each amino acid of all sequences. From
this table, we determined amino acids conserved in over
50 and 80% of the 3842 Glutantβase’s sequences. We
also used the global position table to detect, for each se-
quence, the two glutamates described as catalytic amino
acids in the literature [26, 47, 59, 60].

Substrate channel residues
To define which amino acid residues from the substrate
channel, i.e., residues that possibly interact with ligands
in their way to the active site, we used the Betagdb def-
inition of catalytic pocket [4]. Betagdb uses the β-
glucosidase of the termite Neotermes koshunensis in
complex to cellobiose (PDB ID: 3VIK) to detect the resi-
dues at 6.5 Å from any atom of the ligand (in this case,
the substrate cellobiose). This value was defined based
on the method proposed by [61] to construct representa-
tive fingerprints of protein pockets. For N. koshunensis
β-glucosidase, 24 residues in the substrate channel were
detected. Once again, we used the global position table
to identify analogous positions for each Glutantβase
sequence.

Secondary structure prediction
We used the DSSP command line tool [62, 63] to predict
the secondary structure of each sequence. DSSP calculates
the most likely secondary structure assignment from each
three-dimensional structure model. DSSP returns an H
character for amino acid residues in α-helix, B for residue
in isolated β-bridge, E for an extended strand participant
of a β ladder, G for 3-helix, I for π-helix, T for a
hydrogen-bonded turn, and S for a bend.

Coevolution analysis
We performed the family-wide sequence coevolution
analysis using the Decomposition of Residue Coevolu-
tion Networks (DRCN) method with PFstats software
[64, 65]. A multiple sequence alignment from glycosyl
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hydrolases (family 1) was obtained from Pfam [66], entry
PF00232. The alignment was filtered to remove frag-
ments (a minimum 80% size of the hidden Markov
model used for this protein family) and redundancy
(80% maximum identity), resulting in a final alignment
of 4084 sequences. Residue-specific correlations were
calculated as described previously [64], with a minimum
score of 10, minimum sub-alignment size of 15%, and
Δf = 0.2. The resulting coevolution network obtained
from these pairwise correlation signals was decomposed
into communities using a standard connected compo-
nents algorithm.

Extrapolated mutations
In the last years, several studies have proposed muta-
tions through site-direct mutagenesis to improve the ac-
tivity of β-glucosidases enzymes [4, 9, 10, 12, 27, 43, 44,
67, 68]. Hence, many mutation sites have been described
as responsible for leading to beneficial characteristics,
such as glucose tolerance and thermostability. We won-
dered if the same effects could be extrapolated to other
β-glucosidases by mutating analogous sites. To verify
this hypothesis, we chose six mutations described in the
literature as beneficial to improve β-glucosidase activity,
glucose resistance, or thermostability (Table 1).
We scanned the global position table for sequences

with the same amino acid mutated in an analogous pos-
ition. Then, we suggested a mutation for the amino acid
residue based on the mutation described in the litera-
ture. For example, for the β-glucosidase of a marine
metagenome (UniProt ID: D0VEC8), the mutation
H228T has been experimentally described as responsible
for improving the glucose tolerance and, thus, improving
the β-glucosidase’s catalytic activity even in high concen-
trations of the product. Based on global position table,
the position 228 of D0VEC8 is analogous to the position
235 in the β-glucosidase of Microbacterium sp. Leaf320
(UniProt ID: A0A0Q5FWL5). Also, both present a histi-
dine in this position. Hence, we hypothesized that the
mutant H235T of the β-glucosidase of Microbacterium
sp. Leaf320 should present similar characteristics that
the mutant H228T of the marine metagenome β-
glucosidase. To prove this, we extrapolated possible

mutations from the six mutations described in Table 1
to all Glutantβase sequences using a similar strategy to
the earlier described. A total of 5607 mutations were
suggested for the 3842 Glutantβase sequences (an aver-
age of 1.45 mutations per sequence). Then, we per-
formed comparative modeling for each mutant using the
point-mutation script of the MODELLER software [54].
To estimate if the mutations impact the ligand inter-
action in the substrate channel, we performed molecular
docking analysis.

Molecular docking
Before molecular docking, we performed a minimization
step for the 3842 model structures (from now on, called
wild) and for the 5607 mutant modeled structures (from
now on, called mutants) using AMBER16 [69]. This was
performed to minimize the potential energy of the mod-
eled structures. We used 750 steps of the steepest des-
cent algorithm, and then we switched to the conjugate
gradient algorithm for another 250 steps.
We performed docking for glucose and cellobiose for

wild and mutant structures using Autodock Vina [70].
Based on in-house protocols, we generated ten binding
modes and defined the exhaustiveness parameter as 20.
The docking region was defined by a cubic box of
15x15x15 Å. The box center was calculated using in-
house Python scripts based on the average of the atom
coordinates of the two catalytic glutamates. Glucose and
cellobiose structures were collected from the Zinc data-
base [71]. To compare the docking results, we used the
affinity score (Kcal/mol) calculated by Vina. A higher
negative value indicates a better affinity for a determined
ligand, while a positive value shows a lower affinity for
the ligand.
We expected that a high affinity for glucose indicates

an inhibition by it, which may show a lower catalytic ac-
tivity. On the other hand, a high affinity for cellobiose
(i.e., the substrate) may indicate higher catalytic activity.
As Autodock Vina uses the Monte Carlo algorithm, a
nondeterministic algorithm, the same docking experi-
ment performed two or more times could get different
results. To reduce the random impact of the Monte
Carlo algorithm, we performed each docking experiment

Table 1 Mutations reported in the literature for improving the activity, glucose tolerance, and stability of β-glucosidases
# Mutation Effect Source

1 H228T Responsible for attracting glucose to the middle of the substrate channel and, then, to the exit, which improves the resistance
to product inhibition.

[9]

2 V174C Mutations were described to increase the optimal temperature from 50 ° C to 60°, reduce the optimal pH from 6 to 5.5, and
increases the half-life from 1 to 2-20 h.

[12]

3 A404V

4 L441F

5 H184F This mutation has been reported as responsible for promoting an increase in the inhibition constant for glucose. [27]

6 E96K Described as responsible for improving the protein thermostability. [47]
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in triplicate. We analyzed average affinity scores for (i)
the first docked pose in triplicate, (ii) poses one to three
in triplicate, and (iii) poses one to ten in triplicate.
To evaluate if affinity score changes were statistically

significant, we carried out the student’s t-test for paired
samples using in-house R scripts (5% of significance).
For this hypothesis test, we verified the statistical rele-
vance for each of the six possible mutations (Table 1).

Web-based tool
We incorporate the results into a webtool available at
http://bioinfo.dcc.ufmg.br/glutantbase. The web-based
tool was constructed using the same framework structure
of [44, 72–74], and the database was built using the
MySQL Database Management System (https://mysql.
com). For each β-glucosidase structure, a three-
dimensional visualization was constructed using 3Dmol
[75]. Furthermore, we used BLAST [52] to perform
searches for similar sequences inside Glutantβase.

Utility and discussion
Glutantβase webtool
To make Glutantβase a reference into the design of im-
proved β-glucosidase enzymes, essential features to help
researchers decide site-directed mutagenesis was in-
cluded. Glutantβase includes 3842 structures of β-
glucosidase enzymes. For each β-glucosidase, we con-
structed an individual page with a 3D-model and classi-
fied the role of some amino acids (Fig. 1a-b).
The β-glucosidase’s active site is composed of a glu-

tamate pair, acid/base catalytic and nucleophile [60, 76].
We predicted and showed the position of both glutamic
acid amino acids in all sequences (Fig. 1c). The literature
has described that mutations in these residues lead to
loss of activity [59, 77]. Therefore, to design improved β-
glucosidases, mutations in these residues are not recom-
mended. The same recommendation can be assigned for
conserved positions (Fig. 1f-g), although the impact of
mutating most of these amino acids have not been
established. Besides, information about conserved amino

Fig. 1 Glutantβase’s interface overview. (a) Protein’s details and three-dimensional visualization (for this example, we used the β-glucosidase of
Streptomyces sp. Root1295 - UniProt ID: A0A0Q7I6P6). (b) Protein sequence. Some amino acids are colored according to their predicted role: (c)
secondary structure (border-bottom is colored of yellow for an alpha-helix region, purple for a β-strand region, and grey for a loop region); (d)
predicted mutation (green); (e) residue located in the substrate channel (orange letters); (f) amino acids conserved in more than 80% of the GH1
β-glucosidases (red); (g) amino acids conserved in more than 50% of the GH1 β-glucosidases (blue); (h) amino acids present in the coevolution
network (border-top is colored of magenta for community 1 and colored of cyan for community 2; a click on the button shows details about
correlated residues); and (i) acid/base catalytic or nucleophile (black)
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acids could be combined with the coevolutive network
data to give new insights into mutations to be experi-
mentally tested (Fig. 1h).
The coevolutive networks indicate possible relation-

ships between amino acid pairs in conserved positions.
Residue coevolved networks are constructed based on
the technique called statistical coupling analysis and
community detection [64]. These approaches use mul-
tiple sequence alignments of a protein family to detect
conserved amino acids and correlations among a set of
residues considering all the sequences. In statistical
coupling analysis, the conservation and coupling of
amino acid residues are outcomes of evolutive restric-
tions. On the other hand, less conserved positions or
with no correlation to other amino acids are classified as
not important for the proteins in that family. Our ana-
lysis returned 11 network communities, although we ex-
hibited only the two most populated: community 1
colored in magenta and community 2 colored in cyan
(details will be discussed in the next sections). For ex-
ample, we detected that the appearance of phenylalanine
in position 442, highlighted in Fig. 1h, is correlated to
other residues, such as P200, E433, F96, Y498, T378,
W434, H219, Y94, and N431. This suggests that substi-
tution of the residue F442 is complemented by modifica-
tions in P200, E433, F96, Y498, T378, W434, H219, Y94,
and N431, based on other occurrences in proteins from
GH1 family. This could be taken into consideration if
Glutantβase’s users decide to mutate these residues.
Β-glucosidases present an (α/β)8 TIM barrel folding,

with an active site located at the bottom of a channel [7,
13, 26]. Several residues present in this region, known as
the substrate channel or catalytic pocket, have been re-
ported as important for substrate entrance and glucose
withdrawal [9, 10, 45]. Previously, a set of 22 residues
was reported as part of the substrate channel in glucose-
tolerant β-glucosidases [4]. However, only half of them
were conserved in most sequences, which may indicate
that various combinations of amino acids in this region
could take to glucose tolerance characteristics. Glutant-
βase shows substrate channel residues with orange let-
ters (Fig. 1e). Non-conserved residues in the substrate
channel are candidates for initial studies to determine
their role in the saccharification process.
Another feature worth mentioning is the secondary

structure prediction (Fig. 1c). Recent studies have
highlighted the importance of loops in the substrate’s
entrance channel. Fang et al. [28] suggested that the
geometry of loop C of β-glucosidases could be related to
glucose tolerance characteristics. Costa et al. [45] re-
ported an allosteric channel between B and C loops that,
together with protein’s motions, promotes changes in
the water’s dynamics in the region, which supports the
glucose withdrawal. Hence, secondary structure data,

combined with other visualizations, could be useful for
decision making.

3D-models
Each entry of Glutantβase presents a 3D-model available
to download (each entry is identified using the UniProt
ID of the sequence). The models were constructed by
comparative modeling using the MODELLER software
(see methods section). MODELLER’s algorithm uses a
known 3D-structure with the highest identity sequence
(called template) to the target sequence and constructs
models of the target based on spatial restrictions im-
posed by atoms of the template’s backbone. Comparative
modeling is a computational alternative to represent
protein structures not experimentally determined.
Hence, we constructed 100 different models for each
entry. In Fig. 2, we depict the variability of models con-
structed for three β-glucosidase sequences modeled
using templates with 40, 60, and 90% of identity (com-
parative modeling requires at least 25% of sequence
identity).
Comparative modeling uses the template’s backbone

structure as a reference to construct the models. There-
fore, models present a similar backbone structure when
superimposed (Fig. 2a-c; left). The orientation of the side
chains is defined using stereochemical restraints (bond
length and angle) obtained from the CHARMM-22 mo-
lecular mechanics force field [79] and statistical prefer-
ences collected from a set of known structures for
dihedral angles and non-bonded interatomic distances
[55, 80]. Loops and other regions not covered by the se-
quence alignment are defined using an ab initio predic-
tion strategy. Thus, each modeling attempt produces a
variability range of different results (Fig. 2a-c; right). To
define one representative model for each entry is neces-
sary, an assessment step of all produced models. We se-
lected only the best model based on the DOPE energy
score to show in the 3D-panel. Also, we constructed a
Ramachandran plot to verify residues with non-
permissive positions. All these data are available on the
protein’s entry page.

Is it possible to extrapolated known beneficial mutations
to other β-glucosidases?
We suggested mutation sites based on six mutations re-
ported in the literature as responsible for improving β-
glucosidase activity or stability (Fig. 1d). To evaluate if
new mutations could lead to the same effect, we per-
formed a test using molecular docking. Our experiment
consisted of docking glucose and cellobiose molecules
into the wild and the mutant proteins. As the β-
glucosidase inhibition occurs in high glucose concentra-
tion, we expected that glucose-tolerant β-glucosidases
showed a lower affinity for glucose (low capacity to keep
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the product in the active site pocket) and a higher affin-
ity for cellobiose (high capacity to attract the substrate
to the active site pocket).
We based our hypothesis on experimental data re-

ported in the literature. Initially, we calculated the dock-
ing for the beneficial mutation (H228T) of the non-
tolerant β-glucosidases from a marine metagenome
(Bgl1B; Uniprot ID: D0VEC8), obtained from the study
of Yang et al. [9]. This mutation has been described in
the literature as favorable for increasing the β-
glucosidase activity even at high concentrations of glu-
cose. Hence, we expected that the mutant had a higher
affinity for cellobiose (substrate) and a lower affinity for

glucose (product). For the wild modeled protein, we ob-
tained an affinity of − 5.94 kcal/mol for cellobiose and −
5.80 kcal/mol for glucose. For the mutant modeled pro-
tein, we obtained an affinity of − 6.43 kcal/mol for cello-
biose and − 5.76 kcal/mol. Hence, we got the expected
affinity values variation for cellobiose (a negative affinity
variation of − 0.49 kcal/mol) and glucose (a positive af-
finity variation of + 0.04 kcal/mol). The reduction of glu-
cose binding affinity to the active site in the mutated
enzyme, observed here, agrees with the docking study
that corroborates the experimental data presented in [9].
Our results also agree with other computational studies
that verified the relation of this amino acid position for

Fig. 2 Variability of the ten best models constructed by comparative modeling for three β-glucosidases: (a) Klebsiella pneumoniae (40% of identity
with the template of PDB ID: 4B3K); (b) Trifolium repens (60% of identity with the template of PDB ID: 1CBG); and (c) Thermotoga neapolitana (90%
of identity with the template of PDB ID: 1OD0). For each protein (a, b, and c), ten models were superimposed using PyMOL software [78]. On the
left, we showed the protein backbone as a cartoon of ten best models superimposed. On the right, we showed all residues as lines of the ten
best models superimposed. In the center, we arbitrarily highlighted one amino acid: (a) R383, (b) E436, and (c) E360
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the interaction with the substrate and ligand [44–46].
Thus, we hypothesized that these results could be ex-
trapolated to other β-glucosidases. Therefore, we de-
tected analogous residues and repeated the same
experiment to all modeled wild and mutant β-
glucosidases from Glutantβase. In addition, we decided
to verify if mutations in other sites reported as beneficial
(A404V, E96K, H184F, L441F, and V174C) could present
a similar impact in the interaction with substrate or
product.
Since molecular docking scores are binding affinity ap-

proximations, we created a protocol to maximize sam-
pling and ligand conformations. For each wild and
mutant structures, we performed docking in triplicate
for glucose and cellobiose. For each docking run, we col-
lected the ten highest affinity poses returned by Auto-
dock Vina. To define the variance in the affinity, we
analyzed score for only the first pose (1), poses from the
first to the third (1–3), and poses from the first to the
tenth (1–10). Since results had similar values, we will de-
scribe only results for poses 1–3 (we used the average of
affinity scores).
For cellobiose, we expected that a mutation would im-

prove the affinity score from docking, i.e., negative vari-
ation values when comparing wild and mutant scores.
Therefore, cellobiose docking should achieve higher
(more negative) scores in a mutant structure than in the
wild one. However, only H228T derived mutants pre-
sented an improvement in affinity for cellobiose (with
significant statistical values; Table 2).
For glucose, we expected that a mutation would de-

crease the affinity score from docking. In this case, the
variation between wild and mutant scores should be
positive, since glucose docking in the mutant structures
would have a less (more positive) affinity. Two derived
mutants of H184F and H228T showed a reduced affinity
for glucose (with significant statistical values; Table 3).
Our results show that only the mutation of a histidine

to a threonine, at position 228 of the marine metagen-
ome β-glucosidase, can lead to a ligand affinity similar to
a glucose-tolerant β-glucosidase. These results concur

with previous studies that reported exchanging histidine
228 for small amino acids (such as threonine) capable of
acting as a hydrogen bond acceptor could improve the
catalytic activity even in high glucose concentrations [9].
Also, the role of the residue in position 228 has been
established in a molecular dynamics study [45]. When
glucose is trapped in a hydrophobic region of the sub-
strate channel, the residue D238 (analogous position to
H228) takes part in a set of interactions that culminates
in the expelling of glucose from the site (slingshot mech-
anism). Our results further characterize position 228 im-
portance in the interaction process with ligand and
substrate.

Case study: β-glucosidase of Streptomyces sp. Root1295
To illustrate the webtool, we present an analysis of the
Streptomyces sp. Root1295 β-glucosidase (from now on
labeled SrBGL; UniProt ID: A0A0Q7I6P6). E184 and
E379 are the acid/base catalytic and the nucleophile
amino acids (Fig. 1c, i). Residue E184 was appointed this
function in SrBGL since its position corresponds to the
glutamate E745 (global position 745) found in the mul-
tiple sequence alignment. The same occurs to E379,
which corresponds to E1567 in the global position. The
secondary structure analysis also reveals that they are in
the terminal region of β-strand 4 and 7, which matches
the expected positions of the active site residues. Also, a
visual analysis of the 3D-structure shows that the pre-
dicted amino acids are at the bottom of the substrate
channel, which corroborates with our expectation of a
correct prediction.
We detected 23 residues in the substrate channel:

Q38, H139*, W140*, N183*, E184*, W186, C187, F190,
H198, N241, L242, I261, N313*, Y314*, Y315, S316,
S318, W352, E379*, W426*, E433*, W434*, and F442*.
SrBGL presents 11 highly conserved amino acids in the
substrate channel of glucose-tolerant β-glucosidases
(shown previously by a *) [4]. SrBGL introduces W186
and L191, amino acids in analogous positions to W168
and L173 of the glucose-tolerant β-glucosidase of Humi-
cola insolens (PDB ID: 4MDP; Fig. 3). Both amino acids

Table 2 Docking results and hypothesis test for each protein wild and mutant docked to cellobiose (affinity score average for poses
1–3). For affinity scores, lower values represent more affinity. Affinity score variation (ΔAS)
Substrate (cellobiose)

Mutation Affinity score (wild; 1–3) Affinity score (mutant; 1–3) Variation (ΔAS) ΔAS expected p-value status

A404V −4.6347 −4.6057 0.0290 ΔAS < 0 1 X

E96K −4.8509 −4.8341 0.0168 ΔAS < 0 1 X

H184F −4.7473 −4.7009 0.0463 ΔAS < 0 1 X

H228T −4.4806 −4.6509 −0.1703 ΔAS < 0 < 2.2e-16 ✓

L441F −4.8407 −4.8239 0.0169 ΔAS < 0 0.9031 X

V174C −5.1818 −5.1669 0.0149 ΔAS < 0 1 X
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are important for glucose tolerance mechanisms because
they restrict access to the active site [10]. They act in
collaboration with D238 to release glucose in the so-
called slingshot mechanism [45]. Since in SrBGL a histi-
dine is found in this position, this might suggest that
SrBGL cannot perform the slingshot mechanism.
Glutantβase predicted three mutations for SrBGL: (i)

E113K, analogous position to E96K [47]; (ii) H198F,
analogous position to H184F [27]; and (iii) H243T,
analogous position to H228T [9]. We observed a reduc-
tion of affinity between protein and product (glucose)
for H243T and H198F mutants in all docking poses ana-
lyzed (Table 4). This suggests that these mutations could
reduce the glucose inhibition of SrBGL, which could
amplify its potential for hydrolyzing cellobiose for indus-
trial purposes.
The E113K mutant presented few differences for cello-

biose docking. Also, for unknown reasons, the glucose
docking did not return poses enough for 1–10 poses

analysis, which prevents us from having more accurate
conclusions. The E113K mutation occurs on the surface
of the protein, distant to the substrate channel. This mu-
tation is based on the E96K mutant of Bacillus polymyxa
β-glucosidase (PDB ID: 1BGA) [47]. E96K has been pre-
viously reported as responsible for improving the protein
structure thermostability [81]. Thus, we expected that
this mutation would not impact the interactions between
ligand and protein. We also should mention the possibil-
ity of the molecular docking method not being able to
detect the impact of this mutation in the protein struc-
ture. SrBGL case study is available at http://bioinfo.dcc.
ufmg.br/glutantbase/protein/id/A0A0Q7I6P6.

Thermostabilizing mutations are positioned in a
coevolutive network
We included in Glutantβase, the corresponding amino
acids of the GH1 family found in coevolutive networks
communities. This step aims at extending the analysis of

Table 3 Docking results and hypothesis test for each protein wild and mutant docked to glucose (affinity score average for poses
1–3). For affinity scores, lower values represent more affinity. Affinity score variation (ΔAS)
Product (glucose)

Mutation Affinity score (wild; 1–3) Affinity score (mutant; 1–3) Variation (ΔAS) ΔAS expected p-value status

A404V −5.2930 − 5.2988 −0.0059 ΔAS > 0 1 X

E96K −5.3079 −5.3083 −0.0004 ΔAS > 0 0.7174 X

H184F −5.2912 −5.2567 0.0345 ΔAS > 0 < 2.2e-16 ✓

H228T −5.3664 −5.3149 0.0515 ΔAS > 0 < 2.2e-16 ✓

L441F −5.2366 −5.2561 −0.0195 ΔAS > 0 1 X

V174C −5.3045 −5.3077 −0.0032 ΔAS > 0 0.9979 X

Fig. 3 Structural alignment between the SrBGL model (cyan) and the crystal structure of the glucose-tolerant GH1 β-glucosidase from the fungus
Humicola insolens (PDB ID: 4MDP; orange). Analogous positions: E379- > E377 (nucleophile), E184- > E166 (acid/base catalytic), W168- >W186
(hydrophobic region), L191- > L173 (hydrophobic region), and H243- > D238 (slingshot mechanism). Image generated using PyMOL [78]
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conserved amino acids to residue-residue connections.
The study of residue-residue coevolutive networks by
statistic coupling is useful for analyzing conserved pro-
tein families [82–85] and identifying important residues
in protein folding and stability [83, 85–88].
In Glutantβase, we suggest the use of coevolved resi-

due networks to highlight possibly essential amino acids
for the protein structure and function. Mutations in resi-
dues of the coevolved network or their neighbors could
affect the protein function, causing changes in thermo-
stability. In addition, a list of correlated mutation pairs
could be used to identify double mutations found in
other sequences of the GH1 family.
Thus, we used a recent version of this technique

known as DRCN [64] for the available GH1 family se-
quences. With DRCN, it is possible to deconvolute con-
served networks in the same family in different subsets
known as communities. This analyzes can reveal subnet-
works affecting different parts and functions of the pro-
tein or located in different GH1 subclasses.

Case study: β-glucosidase A of Bacillus polymyxa
To illustrate coevolutive analysis, we will use as a model,
the structure of Bacillus polymyxa β-glucosidase A (PDB
ID: 1BGA; from now on labeled BgA). Studies have re-
ported a collection of mutations that enhance BgA’s
thermoresistance, such as E96K and M416I [89].
Highly correlated positions were clustered in 11 coe-

volved sets (not shown). However, only two communities

showed a significant number of descriptive residues and
average conservation. Hence, only these two were in-
cluded in Glutantbase. The communities were named, in
decrescent order of the number of residues, as community
1 (41 descriptive residues for GH1 family) and community
2 (19 descriptive residues; Fig. 4).
Community 1 describes a long-range network of resi-

dues evolutionarily correlated. It includes the internal β-
barrel (between them, the catalytic E352) and a set of
mobile regions at the loops and helix around the protein
surface (Fig. 4a, c). Community 2 is centered on the ac-
tive site and surroundings (Fig. 4b-c). Together, both
communities (Fig. 4) suggest the existence of a multi-
correlated evolutive network integrating all globular pro-
tein cores and active site loops. Interestingly, the posi-
tions described in the literature to influence
thermostability are retrieved or located nearby this same
coevolutionary network (Fig. 4) [85, 89].
For the E96K mutant, the residue found in position 96

is closely surrounded or is distance-compatible with
electrostatic influence (approximately 12 Å) by a set of
residues from community 1 (Fig. 4). Between them, two
glycine amino acids were found as a set of highly coe-
volved partners. The first is G29, which is evolutionarily
correlated with ten residues from the same community.
G29 is located in loop A and presents a distance com-
patible with contacts with the side chain residue 96 and
its close neighbor, N94. The second is G97, the immedi-
ate neighbor to the amino acid in position 96 in helix 7,

Table 4 Docking results for Streptomyces sp. Root1295 β-glucosidase. Affinity score variation (ΔAS) negative values show the
improved affinity between protein and ligand (the more negative scores, the stronger the affinity)

Mutation Docking Poses (average) Affinity Score (wild) Affinity Score (mutant) ΔAS ΔAS expected Status

H243T Cellobiose 1 −6.23 − 6.13 −0.1 ΔAS < 0 x

1–3 −6.07 −6.08 −0.01 ΔAS < 0 ✓

1–10 −5.35 −5.53 −0.18 ΔAS < 0 ✓

Glucose 1 −6.23 −5.83 0.4 ΔAS > 0 ✓

1–3 −6.07 −5.61 0.46 ΔAS > 0 ✓

1–10 −5.44 −5.37 0.07 ΔAS > 0 ✓

H198F Cellobiose 1 −6.23 −6.33 −0.1 ΔAS < 0 ✓

1–3 −6.07 −6.19 −0.12 ΔAS < 0 ✓

1–10 −5.35 −5.32 0.03 ΔAS < 0 x

Glucose 1 −6.23 −5.90 0.33 ΔAS > 0 ✓

1–3 −6.07 −5.67 0.4 ΔAS > 0 ✓

1–10 −5.44 −5.43 0.01 ΔAS > 0 ✓

E113K Cellobiose 1 −6.23 −6.23 0 ΔAS < 0 x

1–3 −6.07 −6.02 0.05 ΔAS < 0 x

1–10 −5.35 −5.00 0.35 ΔAS < 0 x

Glucose 1 −6.23 −5.87 0.36 ΔAS > 0 ✓

1–3 −6.07 −5.67 0.4 ΔAS > 0 ✓

1–10 – – – ΔAS > 0 –
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which is evolutionarily correlated with 11 other residues,
including G29 (Fig. 4a, c). The evolutionary correlations
involving these two specific residues spread around
loops A and E, the catalytic β-barrel, and even loops and
helices on the opposite side of the protein (Fig. 4a).
From the 21 residues evolutionarily influenced by the
G29-G97 pair, 18 are in highly mobile regions (loops, in-
terfaces between loops, helices, or ribbons).
Additionally, the two residues G29-G97 are very close

to the two respective aspartate residues in a position
compatible with transitory salt bonds with the residue in
position 96, D28, and D99, respectively. The residue
R30, a neighbor to G29 from community 1 in loop A
and near residue 96, was previously suggested to have a
thermostabilizing effect when substituted for alanine in
Spodoptera frugiperda β-glucosidase [85]. The substitu-
tion of the positive residue at position 30 disrupts the
salt bridge with D36 (community 1). β-Glucosidase from

the thermophile Thermotoga neapolitana (PDB ID:
5IDI), in addition to the two substitutions E96K and
M416I, also showed disruption of the conserved internal
salt bridge in loop A, with an alanine in position 30 and
a histidine opposed to the conserved aspartate in pos-
ition 36 from community 1.
For the M416I mutant, the residue in position 416 has

numerous neighbors from communities 1 and 2 (Fig. 4).
From community 1, the closest neighbors are: (i) R413
and G415 in loop E; (ii) W398 in the active site β-barrel,
in close contact with the catalytic E352 and evolutionar-
ily correlated with it; and (iii) K429 and S431 in the N-
terminal extremity of helix 22, located at the protein
surface and packed against position 416. From commu-
nity 2, the closest neighbors to position 416 are: (i) F414
in loop E; and (ii) S399 in the C-terminal extremity of
ribbon 12 of the catalytic β-barrel. Between the residues
surrounding position 416, W398 (community 1) and

Fig. 4 Groups of residues involved based on coevolution analysis. a–c Bacillus polymyxa β-glucosidase (PDB ID: 1BGA) is represented as a cartoon.
The colors yellow, cyan, orange, magenta, and green represent loops a–e, respectively. Catalytic residues (E166 and E352) are presented in purple.
The red spheres represent thermostabilizing mutations described for GH1 β-glucosidases in the literature [85, 89] and from a thermophile GH1
structure (PDB: 5IDI). a Blue spheres depict community one residues. b Green spheres depict community two residues. c Graph of coevolving
residues and their communities
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F414 (community 2) have been reported in the literature
as necessary for substrate interaction and stabilization of
the transition state [4, 47]. In addition, a set of residues
from communities 1 and 2 are preserved around the two
respective β-hairpins motifs in the two opposite extrem-
ities from loop E. Between these motifs, the W406 resi-
due from community 2, placed in the β-hairpin motif
bordering the active site, is involved in substrate recog-
nition and transition state stabilization [4, 47]. Also, it is
evolutionarily correlated with F414 (near to position
416). In the superficial β-hairpin motif opposite from
loop E, community 1 residues V419, D420, and R426
participate in a local evolutionary subnetwork with
closer contacts to position 416 (W398, R413, and G415).
This suggests a collaborative behavior of all residues
under the dynamic and topological influence of the pos-
ition 416.
Furthermore, the evolutionary correlations above-

described affect the entire protein surface, with signifi-
cant participation of mobile or functional positions in
the active site loops or catalytic β-barrel. At least two
other thermostabilizing substitutions documented in the
literature in the same neighborhood, N437K (helix 22)
and N411S (loop E), support its importance [89]. Add-
itionally, N411S is close to position 416 and is involved
in the shortening of the side chain, which enhances the
mobility of loop E.
Our results suggest the existence of a multi-

coevolutionary network for all protein structures in the
GH1 family. A set of potentially thermostabilizing posi-
tions appears to be strategically allocated along this net-
work and neighborhood to modulate its topology or
dynamics. It is important to highlight that this network
was previously reported in a statistic coupling study for
this family by Tamaki et al. [85]. However, because of
the limited availability of GH1 sequences deposited in
the free databases at the time (the authors used 768 se-
quences, while our study analyzed 4084 sequences), the
previous study provided a considerably limited view of
the network. Compared to the 61-residue network (con-
sidering the two communities in BgA) recovered here,
Tamaki et al. recovered a network of 23 covariant posi-
tions, most of which correspond to our community 2.
The BgA’s case study is available at http://bioinfo.dcc.
ufmg.br/glutantbase/protein/id/P22073.

Conclusions
In this study, we presented Glutantβase: a database of β-
glucosidase structures and several predicted features. Β-
glucosidases are vital enzymes for saccharification
process that has been target of many studies since they
represent a bottleneck for second-generation biofuel
production. More glucose resistant β-glucosidases are
essential to saccharification in industrial applications.

The web-based tool and the database introduced here
provide a powerful source of features for supporting the
rational design of β-glucosidase enzymes. Glutantβase
provides information about catalytic amino acids, con-
served amino acids, residues found in a coevolution net-
work, protein secondary structure, and residues in the
channel that guides to the active site. We also suggested
mutations for the Glutantβase’s structures based on six
mutations described in the literature as able to improve
catalytic activity or thermostability (A404V, E96K,
H184F, H228T, L441F, and V174C). The molecular
docking score was used to verify the impact of the sug-
gested mutations in the affinity of protein and ligands
(substrate and product). Our results suggest that only
mutations based on the H228T mutant presented re-
duced affinity for glucose (product) and increased
affinity for cellobiose (substrate), which shows an im-
provement in the resistance to product inhibition. We
intend to automatize the insertion of newly discovered
β-glucosidase sequences in Glutantβase. Therefore, we
hope that Glutantβase is useful for the design of more
efficient β-glucosidases, which may help to improve
second-generation biofuel production. Glutantβase is
available at http://bioinfo.dcc.ufmg.br/glutantbase.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12860-020-00293-y.

Additional file 1: Table S1. Templates used for modeling each
structure of Glutantβase.

Additional file 2: Table S2. The DOPE score for each model selected.

Abbreviations
BgA: Bacillus polymyxa β-glucosidase A; DRCN: Decomposition of residue
coevolution networks; GH1: Glycoside hydrolase (Family) 1; PDB: Protein data
bank; SrBGL: Streptomyces sp. Root1295 β-glucosidase

Acknowledgements
The authors thank the funding agencies: Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado
de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq).

Authors’ contributions
DM wrote the manuscript. NP and DM developed the webtool. NP, DM, LHS,
and REOR performed molecular docking analyses. REOR, LHFL, and LB
performed coevolution analyses. NP, LHS, REOR, LHFL, LB, and RCMM revised
the manuscript. RCMM: project conception, guidance, and funding
acquisition. All authors read and approved the manuscript.

Funding
This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Project grant
number 51/2013–23038.004007/2014–82. The funding body did not play any
roles in the design of the study and collection, analysis, and interpretation of
data and in writing the manuscript.

Mariano et al. BMC Molecular and Cell Biology           (2020) 21:50 Page 12 of 15

http://bioinfo.dcc.ufmg.br/glutantbase/protein/id/P22073
http://bioinfo.dcc.ufmg.br/glutantbase/protein/id/P22073
http://bioinfo.dcc.ufmg.br/glutantbase
https://doi.org/10.1186/s12860-020-00293-y
https://doi.org/10.1186/s12860-020-00293-y


Availability of data and materials
The datasets generated and/or analysed during the current study are
available in the Glutantβase’s downloads page: http://bioinfo.dcc.ufmg.br/
glutantbase/home/download.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratory of Bioinformatics and Systems. Department of Computer
Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,
Brazil. 2Laboratory of Molecular Modelling and Bioinformatics (LAMMB),
Department of Physical and Biological Sciences, Universidade Federal de São
João Del-Rei, Campus Sete Lagoas, Sete Lagoas 35701-970, Brazil. 3Protein
Computational Biology Laboratory, Department of Biochemistry and
Immunology, Universidade Federal de Minas Gerais, Belo Horizonte
31270-901, Brazil.

Received: 16 December 2019 Accepted: 22 June 2020

References
1. Choudri BS, Charabi Y, Baawain M, Ahmed M. Bioenergy from biofuel

residues and wastes. Water Environ Res. 2017;89:1441–60.
2. Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel.

Bioresour Technol. 2014;169:742–9.
3. Solomon BD. Biofuels and sustainability. Ann N Y Acad Sci. 2010;1185:119–34.
4. Mariano DCB, Leite C, Santos LHS, et al. Characterization of glucose-tolerant β-

glucosidases used in biofuel production under the bioinformatics perspective:
a systematic review. Genet Mol Res. 2017;16(3):10.4238/gmr16039740.

5. Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass:
biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;
35:377–91.

6. Béguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol
Rev. 1994;13:25–58.

7. Cairns JRK, Esen A. β-Glucosidases. Cell Mol Life Sci. 2010;67:3389–405.
8. Teugjas H, Väljamäe P. Selecting β-glucosidases to support cellulases in

cellulose saccharification. Biotechnol Biofuels. 2013;6:1.
9. Yang Y, Zhang X, Yin Q, Fang W, Fang Z, Wang X, et al. A mechanism of

glucose tolerance and stimulation of GH1 β-glucosidases. Sci Rep. 2015;5:
17296.

10. de Giuseppe PO, de ACB ST, FHM S, Zanphorlin LM, Machado CB, Ward RJ,
et al. Structural basis for glucose tolerance in GH1 β-glucosidases. Acta
Crystallogr D Biol Crystallogr. 2014;70:1631–9.

11. Chamoli S, Kumar P, Navani NK, Verma AK. Secretory expression,
characterization and docking study of glucose-tolerant β-glucosidase from
B. subtilis. Int J Biol Macromol. 2016;85:425–33.

12. Cao LC, Wang ZJ, Ren GH, et al. Engineering a novel glucose-tolerant β-
glucosidase as supplementation to enhance the hydrolysis of sugarcane
bagasse at high glucose concentration. Biotechnol Biofuels. 2015;8:202.
https://doi.org/10.1186/s13068-015-0383-z.

13. Crespim E, Zanphorlin LM, de Souza FHM, Diogo JA, Gazolla AC, Machado
CB, et al. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase
from Exiguobacterium antarcticum B7. Int J Biol Macromol. 2016;82:375–80.

14. Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved
from a Kusaya gravy metagenome [published correction appears in Front
Microbiol. 2015;6:1131]. Front Microbiol. 2015;6:548. https://doi.org/10.3389/
fmicb.2015.00548.

15. Yang F, Yang X, Li Z, Du C, Wang J, Li S. Overexpression and
characterization of a glucose-tolerant β-glucosidase from T. aotearoense
with high specific activity for cellobiose. Appl Microbiol Biotechnol. 2015;99:
8903–15.

16. Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P. Molecular
cloning and expression of thermostable glucose-tolerant β-glucosidase of

Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J
Ind Microbiol Biotechnol. 2015;42:553–65.

17. Thongpoo P, Srisomsap C, Chokchaichamnankit D, Kitpreechavanich V,
Svasti J, Kongsaeree PT. Purification and characterization of three β-
glycosidases exhibiting high glucose tolerance from Aspergillus niger
ASKU28. Biosci Biotechnol Biochem. 2014;78:1167–76.

18. Zhao L, Pang Q, Xie J, Pei J, Wang F, Fan S. Enzymatic properties of
Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to
Clostridium cellulovorans cellulose binding domain and its application in
hydrolysis of microcrystalline cellulose. BMC Biotechnol. 2013;13:1.

19. Lu J, Du L, Wei Y, Hu Y, Huang R. Expression and characterization of a novel
highly glucose-tolerant β-glucosidase from a soil metagenome. Acta
Biochim Biophys Sin. 2013;45:664–73.

20. Rajasree KP, Mathew GM, Pandey A, Sukumaran RK. Highly glucose tolerant
β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of
biomass. J Ind Microbiol Biotechnol. 2013;40:967–75.

21. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and
significance of beta-glucosidases in the hydrolysis of cellulose for
bioethanol production. Bioresour Technol. 2013;127:500–7.

22. Souza FHM, Meleiro LP, Machado CB, Zimbardi ALRL, Maldonado RF, Souza
TACB, et al. Gene cloning, expression and biochemical characterization of a
glucose- and xylose-stimulated β-glucosidase from Humicola insolens RP86.
J Mol Catal B Enzym. 2014;106:1–10.

23. Pei J, Pang Q, Zhao L, Fan S, Shi H. Thermoanaerobacterium
thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high
specific activity for cellobiose. Biotechnol Biofuels. 2012;5:1–10.

24. Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M. Heterologous
expression in Pichia pastoris and characterization of an endogenous
Thermostable and high-glucose-tolerant β-Glucosidase from the termite
Nasutitermes takasagoensis. Appl Environ Microbiol. 2012;78:4288–93.

25. Ramani G, Meera B, Vanitha C, Rao M, Gunasekaran P. Production,
purification, and characterization of a β-Glucosidase of Penicillium
funiculosum NCL1. Appl Biochem Biotechnol. 2012;167:959–72.

26. Jabbour D, Klippel B, Antranikian G. A novel thermostable and glucose-
tolerant β-glucosidase from Fervidobacterium islandicum. Appl Microbiol
Biotechnol. 2012;93:1947–56.

27. Liu J, Zhang X, Fang Z, Fang W, Peng H, Xiao Y. The 184th residue of β-
glucosidase Bgl1B plays an important role in glucose tolerance. J Biosci
Bioeng. 2011;112:447–50.

28. Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, et al. Cloning and
characterization of a β-Glucosidase from marine microbial Metagenome
with excellent glucose tolerance. J Microbiol Biotechnol. 2010;20:1351–8.

29. Benoliel B, Poças-Fonseca MJ, Torres FAG, de Moraes LMP. Expression of a
glucose-tolerant beta-glucosidase from Humicola grisea var. thermoidea in
Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2010;160:2036–44.

30. Decker CH, Visser J, Schreier P. Beta-glucosidase multiplicity from Aspergillus
tubingensis CBS 643.92: purification and characterization of four beta-
glucosidases and their differentiation with respect to substrate specificity,
glucose inhibition and acid tolerance. Appl Microbiol Biotechnol. 2001;55:
157–63.

31. Riou C, Salmon J-M, Vallier M-J, Günata Z, Barre P. Purification, characterization,
and substrate specificity of a novel highly glucose-tolerant β-glucosidase
fromAspergillus oryzae. Appl Environ Microbiol. 1998;64:3607–14.

32. Guo B, Amano Y, Nozaki K. Improvements in glucose sensitivity and stability
of Trichoderma reesei β-Glucosidase using site-directed mutagenesis. PLoS
One. 2016;11:e0147301.

33. Huang Y, Busk PK, Grell MN, Zhao H, Lange L. Identification of a β-
glucosidase from the Mucor circinelloides genome by peptide pattern
recognition. Enzym Microb Technol. 2014;67:47–52.

34. Akram F, ul HI, Khan MA, Hussain Z, Mukhtar H, Iqbal K. Cloning with kinetic
and thermodynamic insight of a novel hyperthermostable β-glucosidase
from Thermotoga naphthophila RKU-10T with excellent glucose tolerance. J
Mol Catal B Enzym. 2016;124:92–104.

35. Mallek-Fakhfakh H, Belghith H. Physicochemical properties of
thermotolerant extracellular β-glucosidase from Talaromyces thermophilus
and enzymatic synthesis of cello-oligosaccharides. Carbohydr Res. 2016;419:
41–50.

36. Souza FHM, Inocentes RF, Ward RJ, Jorge JA, Furriel RPM. Glucose and
xylose stimulation of a β-glucosidase from the thermophilic fungus
Humicola insolens: a kinetic and biophysical study. J Mol Catal B Enzym.
2013;94:119–28.

Mariano et al. BMC Molecular and Cell Biology           (2020) 21:50 Page 13 of 15

http://bioinfo.dcc.ufmg.br/glutantbase/home/download
http://bioinfo.dcc.ufmg.br/glutantbase/home/download
https://doi.org/10.1186/s13068-015-0383-z
https://doi.org/10.3389/fmicb.2015.00548
https://doi.org/10.3389/fmicb.2015.00548


37. Meleiro LP, Zimbardi ALRL, Souza FHM, Masui DC, Silva TM, Jorge JA, et al. A
novel β-glucosidase from Humicola insolens with high potential for
untreated waste paper conversion to sugars. Appl Biochem Biotechnol.
2014;173:391–408.

38. Cota J, Corrêa TLR, Damásio ARL, Diogo JA, Hoffmam ZB, Garcia W, et al.
Comparative analysis of three hyperthermophilic GH1 and GH3 family
members with industrial potential. New Biotechnol. 2015;32:13–20.

39. Gumerov VM, Rakitin AL, Mardanov AV, Ravin NV, Gumerov VM, Rakitin AL,
et al. A Novel Highly Thermostable Multifunctional Beta-Glycosidase from
Crenarchaeon Acidilobus saccharovorans, A Novel Highly Thermostable
Multifunctional Beta-Glycosidase from Crenarchaeon Acidilobus
saccharovorans. Archaea. 2015;2015:e978632.

40. Schröder C, Elleuche S, Blank S, Antranikian G. Characterization of a heat-
active archaeal β-glucosidase from a hydrothermal spring metagenome.
Enzym Microb Technol. 2014;57:48–54.

41. Jeng W-Y, Wang N-C, Lin M-H, Lin C-T, Liaw Y-C, Chang W-J, et al. Structural
and functional analysis of three β-glucosidases from bacterium Clostridium
cellulovorans, fungus Trichoderma reesei and termite Neotermes
koshunensis. J Struct Biol. 2011;173:46–56.

42. Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL,
Hofemeister J. Genes encoding two different beta-glucosidases of
Thermoanaerobacter brockii are clustered in a common operon. Appl
Environ Microbiol. 1997;63:3902–10.

43. Salgado JCS, Meleiro LP, Carli S, Ward RJ. Glucose tolerant and glucose
stimulated β-glucosidases - a review. Bioresour Technol. 2018;267:704–13.

44. Mariano DCB, Santos LH, Machado KDS, Werhli AV, de Lima LHF, de Melo-
Minardi RC. A Computational Method to Propose Mutations in Enzymes
Based on Structural Signature Variation (SSV). Int J Mol Sci. 2019;20(2):333.
https://doi.org/10.3390/ijms20020333.

45. Costa LSC, Mariano DCB, Rocha REO, Kraml J, da SCH, Liedl KR, et al.
Molecular Dynamics Gives New Insights into the Glucose Tolerance and
Inhibition Mechanisms on β-Glucosidases. Molecules. 2019;24:3215.

46. de LLHF, Fernandez-Quintéro M, REO R, DCB M, de M-MRC, Liedl KR.
Conformational flexibility correlates with glucose tolerance for point
mutations in β-glucosidases – A computational study. J Biomol Struct Dyn.
2020;0:ja:1–20.

47. Sanz-Aparicio J, Hermoso JA, Martínez-Ripoll M, Lequerica JL, Polaina J.
Crystal structure of beta-glucosidase a from bacillus polymyxa: insights into
the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol. 1998;275:
491–502.

48. Bai A, Zhao X, Jin Y, Yang G, Feng Y. A novel thermophilic β-glucosidase
from Caldicellulosiruptor bescii: characterization and its synergistic catalysis
with other cellulases. J Mol Catal B Enzym. 2013;85–86:248–56.

49. Bitar M, Franco GR. A basic protein comparative three-dimensional
modeling methodological workflow theory and practice. IEEE/ACM Tran
Comput Biol Bioinform. 2014;11:1052–65.

50. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The
protein data Bank. Nucleic Acids Res. 2000;28:235–42.

51. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al.
Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics. 2009;25:1422–3.

52. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403-10. https://doi.org/10.1016/S0022-
2836(05)80360-2.

53. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam
H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.

54. Webb B, Sali A. Comparative protein structure modeling using MODELLER.
Curr Protoc Bioinformatics. 2014;47:5.6.1–32.

55. Shen M, Sali A. Statistical potential for assessment and prediction of protein
structures. Protein Sci. 2006;15:2507–24.

56. Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, et al.
Structure validation by Calpha geometry: phi,psi and Cbeta deviation.
Proteins. 2003;50:437–50.

57. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable
generation of high-quality protein multiple sequence alignments using
Clustal omega. Mol Syst Biol. 2011;7:539.

58. Sievers F, Higgins DG. Clustal omega, accurate alignment of very large
numbers of sequences. Methods Mol Biol. 2014;1079:105–16.

59. Withers SG, Rupitz K, Trimbur D, Warren RA. Mechanistic consequences of
mutation of the active site nucleophile Glu 358 in agrobacterium beta-
glucosidase. Biochemistry. 1992;31:9979–85.

60. Jenkins J, Lo Leggio L, Harris G, Pickersgill R. Beta-glucosidase, beta-
galactosidase, family a cellulases, family F xylanases and two barley
glycanases form a superfamily of enzymes with 8-fold beta/alpha
architecture and with two conserved glutamates near the carboxy-terminal
ends of beta-strands four and seven. FEBS Lett. 1995;362:281–5.

61. Pires DEV, de Melo-Minardi RC, da Silveira CH, Campos FF, Meira W. aCSM:
noise-free graph-based signatures to large-scale receptor-based ligand
prediction. Bioinformatics. 2013;29:855–61.

62. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22:2577–637.

63. Touw WG, Baakman C, Black J, te Beek TAH, Krieger E, Joosten RP, et al. A
series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;
43(Database issue):D364–8.

64. Bleicher L, Lemke N, Garratt RC. Using amino acid correlation and
community detection algorithms to identify functional determinants in
protein families. PLoS One. 2011;6:e27786.

65. Fonseca-Júnior NJ, Afonso MQL, Oliveira LC, Bleicher L. PFstats: a network-
based open tool for protein family analysis. J Comput Biol. 2018;25:480–6.

66. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The
Pfam protein families database: towards a more sustainable future. Nucleic
Acids Res. 2016;44:D279–85.

67. Voorhorst WG, Eggen RI, Luesink EJ, de Vos WM. Characterization of the
celB gene coding for beta-glucosidase from the hyperthermophilic
archaeon Pyrococcus furiosus and its expression and site-directed mutation
in Escherichia coli. J Bacteriol. 1995;177:7105–11.

68. Lee H-L, Chang C-K, Jeng W-Y, Wang AH-J, Liang P-H. Mutations in the
substrate entrance region of -glucosidase from Trichoderma reesei improve
enzyme activity and thermostability. Protein Eng Des Sel. 2012;25:733–40.

69. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro
VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW,
Greene D, Harris R, Homeyer N, Huang Y, Izadi S, Kovalenko A, Kurtzman T,
Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz
KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F,
Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL,
Smith J, SalomonFerrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu
X, Xiao L, York DM, Kollman PA. AMBER 18. San Francisco: University of
California; 2018.

70. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and
multithreading. J Comput Chem. 2010;31:455–61.

71. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool
to discover chemistry for biology. J Chem Inf Model. 2012;52:1757–68.

72. Fassio AV, Santos LH, Silveira SA, Ferreira RS, de Melo-Minardi RC. nAPOLI: a
graph-based strategy to detect and visualize conserved protein-ligand
interactions in large-scale [published online ahead of print, 2019 Jan 10].
IEEE/ACM Trans Comput Biol Bioinform. 2019;10.1109/TCBB.2019.2892099.
https://doi.org/10.1109/TCBB.2019.2892099.

73. Fassio AV, Martins PM, Guimarães S da S, junior SSA, Ribeiro VS, de Melo-
Minardi RC, et al. Vermont: a multi-perspective visual interactive platform for
mutational analysis BMC Bioinformatics 2017;18:403.

74. Silva MFM, Martins PM, Mariano DCB, Santos LH, Pastorini I, Pantuza N, et al.
Proteingo: motivation, user experience, and learning of molecular
interactions in biological complexes. Entertainment Comput. 2019;29:31–42.

75. Rego N, Koes D. 3Dmol.Js: molecular visualization with WebGL.
Bioinformatics. 2015;31:1322–4.

76. Withers SG, Warren RAJ, Street IP, Rupitz K, Kempton JB, Aebersold R.
Unequivocal demonstration of the involvement of a glutamate residue as a
nucleophile in the mechanism of a retaining glycosidase. J Am Chem Soc.
1990;112:5887–9.

77. Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A. The
mechanism of substrate (aglycone) specificity in beta -glucosidases is
revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA,
−DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci U S A. 2000;97:
13555–60.

78. Schrödinger LLC. The PyMOL Molecular Graphics System, Version 1.8; 2015.
79. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B,

et al. CHARMM: the biomolecular simulation program. J Comput Chem.
2009;30:1545–614.

80. Sali A, Overington JP. Derivation of rules for comparative protein modeling
from a database of protein structure alignments. Protein Sci. 1994;3:1582–96.

Mariano et al. BMC Molecular and Cell Biology           (2020) 21:50 Page 14 of 15

https://doi.org/10.3390/ijms20020333
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1109/TCBB.2019.2892099


81. Lopez-Camacho C, Salgado J, Lequerica JL, Madarro A, Ballestar E, Franco L,
et al. Amino acid substitutions enhancing thermostability of bacillus
polymyxa beta-glucosidase a. Biochem J. 1996;314(Pt 3):833–8.

82. Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, et al. Surface
sites for engineering allosteric control in proteins. Science. 2008;322:438–42.

83. Noel JK, Morcos F, Onuchic JN. Sequence co-evolutionary information is a
natural partner to minimally-frustrated models of biomolecular dynamics.
F1000Res. 2016;5:F1000 Faculty Rev-106.

84. Süel GM, Lockless SW, Wall MA, Ranganathan R. Evolutionarily conserved
networks of residues mediate allosteric communication in proteins. Nat
Struct Biol. 2003;10:59–69.

85. Tamaki FK, Textor LC, Polikarpov I, Marana SR. Sets of covariant residues
modulate the activity and thermal stability of GH1 β-glucosidases. PLoS
One. 2014;9:e96627.

86. Coucke A, Uguzzoni G, Oteri F, Cocco S, Monasson R, Weigt M. Direct
coevolutionary couplings reflect biophysical residue interactions in proteins.
J Chem Phys. 2016;145:174102.

87. Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary
units of three-dimensional structure. Cell. 2009;138:774–86.

88. Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R.
Evolutionary information for specifying a protein fold. Nature. 2005;437:512.

89. González-Blasco G, Sanz-Aparicio J, González B, Hermoso JA, Polaina J.
Directed evolution of β-glucosidase a from Paenibacillus polymyxa to
thermal resistance. J Biol Chem. 2000;275:13708–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Mariano et al. BMC Molecular and Cell Biology           (2020) 21:50 Page 15 of 15


	Abstract
	Background
	Construction and content
	Sequence collection
	Comparative modeling
	Multiple sequence alignment
	Substrate channel residues
	Secondary structure prediction
	Coevolution analysis
	Extrapolated mutations
	Molecular docking
	Web-based tool

	Utility and discussion
	Glutantβase webtool
	3D-models
	Is it possible to extrapolated known beneficial mutations to other β-glucosidases?
	Case study: β-glucosidase of Streptomyces sp. Root1295
	Thermostabilizing mutations are positioned in a coevolutive network
	Case study: β-glucosidase A of Bacillus polymyxa

	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

